Вода в продуктах питания. Продукты богатые водой

Введение 2

Свободная и связанная влага в пищевых продуктах 3

Активность воды. Изотермы сорбции 9

Активность воды и стабильность пищевых продуктов 13

Роль льда в обеспечении стабильности пищевых продуктов 17

Методы определения влаги в пищевых продуктах 19

Заключение 20

Список литературы 21

Введение

Вода - важная составляющая пищевых продуктов. Она присутствует и разнообразных растительных и животных продуктах как клеточный и внеклеточный компонент, как диспергирующая среда и растворитель, обусловливая их консистенцию и структуру и влияя на внешний вид, вкус и устойчивость продукта при хранении. Благодаря физическому взаимо­действию с белками, полисахаридами, липидами и солями, вода вносит значительный вклад в текстуру пищи.

Количество воды в пищевых продуктах влияет на их качество и сохраняемость. Скоропортящиеся продукты с повышенным содержанием влаги без консервирования длительное время не сохраняются. Вода, содержащаяся в продуктах, способствует ускорению в них химических, биохимических и других процессов. Продукты с малым содержанием воды лучше сохраняются.

Многие виды пищевых продуктов содержат большое количество вла­ги, что отрицательно сказывается на их стабильности в процессе хране­ния. Поскольку вода непосредственно участвует в гидролитических про­цессах, ее удаление или связывание за счет увеличения содержания соли или сахара тормозит многие реакции и ингибирует рост микроорганиз­мов, таким образом удлиняя сроки хранения продуктов. Важно также от­метить, что удаление влаги путем высушивания или замораживания существенно влияет на химический состав и природные свойства.

Целью данной работы является исследование свойств и особенностей поведения воды и льда в пищевых продуктах.

Для достижения поставленной цели решаются следующие основные задачи:

Изучение различных форм связи воды в пищевых продуктов;

Выяснение взаимосвязи активности воды пищевых продуктов с их физико-химическими, реологическими и технологическими свойствами, а также качественными изменениями при обработке и хранении.

Свободная и связанная влага в пищевых продуктах

Вода в пищевых продуктах играет, как уже отмечалось, важную роль, т. к. обусловливает консистенцию и структуру продукта, а ее взаимодей­ствие с присутствующими компонентами определяет устойчивость про­дукта при хранении.

Общая влажность продукта указывает на количество влаги в нем, но не характеризует ее причастность к химическим, биохимическим и микроби­ологическим изменениям в продукте. В обеспечении его устойчивости при хранении важную роль играет соотношение свободной и связанной влаги. Связанная влага- это ассоциированная вода, прочно связанная с раз­личными компонентами - белками, липидами и углеводами за счет хи­мических и физических связей. Свободная влага- это влага, не связанная полимером и доступная для протекания биохимических, химических и микробиологических реакций. Рассмотрим некоторые примеры.

При влажности зерна 15 - 20% связанная вода составляет 10 - 15%. При большей влажности появляется свободная влага, способствующая уси­лению биохимических процессов (например, прорастанию зерна).

Плоды и овощи имеют влажность 75 - 95%. В основном, это свобод­ная вода, однако примерно 5% влаги удерживается клеточными коллоидами в прочно связанном состоянии. Поэтому овощи и плоды легко вы­сушить до 10 - 12%, но сушка до более низкой влажности требует приме­нения специальных методов.

Большая часть воды в продукте может быть превращена в лед при -5°С, а вся - при - 50°С и ниже. Однако определенная доля прочно свя­занной влаги не замерзает даже при температуре -60°С.

«Связывание воды» и «гидратация» - определения, характеризующие способность воды к ассоциации с различной степенью прочности с гидрофильными веществами. Размер и сила связывания воды или гидрата­ции зависит от таких факторов, как природа неводного компонента, со­став соли, рН, температура.

В ряде случаев термин «связанная вода» используется без уточнения его смысла, однако пред­лагается и достаточно много его определений. В соответствии с ними свя­занная влага:

Характеризует равновесное влагосодержание образца при некоторой температуре и низкой относительной влажности;

Не замерзает при низких температурах (-40°С и ниже);

Не может служить растворителем для добавленных веществ;

Дает полосу в спектрах протонного магнитного резонанса;

Перемещается вместе с макромолекулами при определении скорости седиментации, вязкости, диффузии;

Существует вблизи растворенного вещества и других неводных веществ и имеет свойства, значительно отличающиеся от свойств всей массы воды в системе.

Указанные признаки дают достаточно полное качественное описание связанной воды. Однако ее количественная оценка по тем или иным при­знакам не всегда обеспечивает сходимость результатов. Поэтому боль­шинство исследователей склоняются к определению связанной влаги только по двум из перечисленных выше признаков. По этому определе­нию, связанная влага - это вода, которая существует вблизи растворен­ного вещества и других неводных компонентов, имеет уменьшенную мо­лекулярную подвижность и другие свойства, отличающиеся от свойств всей массы воды в той же системе, и не замерзает при - 40°С. Такое опре­деление объясняет физическую сущность связанной воды и обеспечива­ет возможность сравнительно точной ее количественной оценки, т.к. вода, незамерзающая при - 40°С, может быть измерена с удовлетворительным результатом (например, методом ПМР или калориметрически). При этом действительное содержание связанной влаги изменяется в зависимости от вида продукта.

Причины связывания влаги в сложных системах различны. Наибо­лее прочно связанной является так называемая органически связанная вода. Она представляет собой очень малую часть воды в высоковлажных пищевых продуктах и находится, например, в щелевых областях белка или в составе химических гидратов. Другой весьма прочно связанной водой является близлежащая влага, представляющая собой монослой при большинстве гидрофильных групп неводного компонента. Вода, ассо­циированная таким образом с ионами и ионными группами, является наиболее прочно связанным типом близлежащей воды. К монослою при­мыкает мультислойная вода (вода полимолекулярной адсорбции), обра­зующая несколько слоев за близлежащей водой. Хотя мультислой - это менее прочно связанная влага, чем близлежащая влага, она все же еще достаточно тесно связана с неводным компонентом, и потому ее свой­ства существенно отличаются от чистой воды. Таким образом, связан­ная влага состоит из «органической», близлежащей и почти всей водымультислоя.

Кроме того, небольшие количества воды в некоторых клеточных сис­темах могут иметь уменьшенные подвижность и давление пара из-за на­хождения воды в капиллярах. Уменьшение давления пара и активности воды (a w) становится существенным, когда капилляры имеют диаметр меньше, чем 0,1µ м. Большинство же пищевых продуктов имеют капил­ляры диаметром от 10 до 100 μм, которые, по-видимому, не могут замет­но влиять на уменьшение a w в пищевых продуктах.

В пищевых продуктах имеется также вода, удерживаемая макромолекулярной матрицей. Например, гели пектина и крахмала, растительные и животные ткани при небольшом количестве органического материала могут физически удерживать большие количества водых .

Хотя структура этой воды в клетках и макромолекулярной матрице точно не установлена, ее поведение в пищевых системах и важность для качества пищи очевидна. Эта вода не выделяется из пищевого продукта даже при большом механическом усилии. С другой стороны, в техноло­гических процессах обработки она ведет себя почти как чистая вода. Ее, например, можно удалить при высушивании или превратить в лед при замораживании. Таким образом, свойства этой воды, как свободной, не­сколько ограничены, но ее молекулы ведут себя подобно водным моле­кулам в разбавленных солевых растворах.

Именно эта вода составляет главную часть воды в клетках и гелях, и изменение ее количества существенно влияет на качество пищевых про­дуктов. Например, хранение гелей часто приводит к потере их качества из-за потери этой воды (так называемого синерезиса). Консервирование замораживанием тканей часто приводит к нежелательному уменьшению способности к удерживанию воды в процессе оттаивания.

В таблицах 1 и 2 описаны свойства различных видов влаги в пи­щевых продуктах.

Свойства Свободная Вода в макромолекулярной матрице
Общее описание

вода, которая может быть легко удалена из продукта. Вода-вода –водородные связи преобладают. Имеет

свойства, похожие на воду в слабых растворах солей. Обладает свойством свободного истечения

вода, которая может быть

удалена из продукта. Вода-

вода-водородные связи

превалируют. Свойства воды

подобны воде в разбавленных солевых растворах. Свободное истечение затруднено

матрицей геля или ткани
Точка замерзания несколько ниже по сравнению с чистой водой

Способность быть

растворителем

большая
Молекулярная подвижность по сравнению с чистой водой несколько меньше

Энтальпия парообразования

по сравнению с чистой водой

без существенных изменений

чете на общее содержание влаги в продуктах с высокой

влажностью (90% Н 2 0),%

96%

Зона изотермы

вода в зоне III состоит из воды, присутствующей

в зонах I и II, + вода, добавленная или удаленная

внутри зоны III

в отсутствие гелей и

клеточных структур эта

вода является свободной,

нижняя граница зоны III

нечеткая и зависит от

продукта и температуры

в присутствии гелей или

клеточных структур вся вода

связана в макромолекулярной матрице. Нижняя

граница зоны III нечеткая и

зависит от продукта и тем­пературы

Обычная причина

порчи пищевых

продуктов

высокая скорость большинства реакций,

рост микроорганизмов


Свойства Органически связанная вода Монослой Мультислой
Общее описание Вода как общая часть неводного компонента Вода, которая сильно взаимодействует с гидрофильными группами неводных компонентов путемвода-ион, или вода - диполь ассоциации; вода в микрокапиллярах (d < 0,1 \м)

Вода, которая примыкает к монослою и которая образует несколько слоев вокруг гидрофильных группневодного компонента. Превалируют вода-вода и вода-растворенное вещество-водородные связи

Точка замерзания по сравнению с чистой водой Не замерзает при -40 °С Не замерзает при -40 °С Большая часть не замерзает при -40 "С.Остальная часть замерзает при значительно пониженной температуре
Способность служить растворителем Нет Нет Достаточно слабая
Молекулярная подвижность Очень малая Существенно меньше Меньше
Энтальпия парообразования по сравнению с чистой водой Сильно увеличена Значительно увеличена Несколько увеличена

Зона изотермы сорбции

Органически связанная вода показывает практически нулевую активность и,таким образом, существует в экстремально левом конце зоны Вода в зоне 1 изотермы состоит изнебольшого количества органической влаги с остатком монослоявлаги. Верхняя граница зоны I неявляется четкой и варьирует в зависимости от продукта и температуры Вода в зоне 11 состоит из воды, присутствующей в зоне I, + вода добавленная или удаленная внутри зоны II(мультислойная влага). Граница зоны IIне является четкой и варьирует в зависимости от продукта и температуры
Стабильность пищевых продуктов Самоокисление Оптимальная стабильность при a w = 0,2-0,3 Если содержание воды увеличивается выше нижней части зоны II, скоростьпочти всех реакций увеличивается

Активность воды. Изотермы сорбции

Давно известно, что существует взаимосвязь (хотя и далеко не совершенная) между влагосодержанием пищевых продуктов и их сохранно­стью (или порчей). Поэтому основным методом удлинения сроков хра­нения пищевых продуктов всегда было уменьшение содержания влаги путем концентрирования или дегидратации.

Однако часто различные пищевые продукты с одним и тем же содер­жанием влаги портятся по-разному. В частности, было установлено, что при этом имеет значение, насколько вода ассоциирована с неводными компонентами: вода, сильнее связанная, меньше способна поддержать процессы, разрушающие (портящие) пищевые продукты, такие как рост микроорганизмов и гидролитические химические реакции.

Чтобы учесть эти факторы, был введен термин «активность воды». Этот термин безусловно лучше характеризует влияние влаги на порчу про­дукта, чем просто содержание влаги. Естественно, существуют и другие факторы (такие как концентрация 0 2 , рН, подвижность воды, тип ра­створенного вещества), которые в ряде случаев могут сильнее влиять на разрушение продукта. Тем не менее, водная активность хорошо корре­лирует со скоростью многих разрушительных реакций, она может быть измерена и использована для оценки состояния воды в пищевых про­дуктах и ее причастности к химическим и биохимическим изменениям. Активность воды (a w) - это отношение давления паров воды наддан­ным продуктом к давлению паров над чистой водой при той же темпера­туре. Это отношение входит в основную термодинамическую формулу определения энергии связи влаги с материалом (уравнение Ребиндера):

ΔF = L = RTln = -RT-lna w

По величине активности воды (табл. 3) выделяют: продукты с вы­сокой влажностью (a w = 1,0-0,9); продукты с промежуточной влажнос­тью (a w = 0,9-0,6); продукты с низкой влажностью (а = 0,6-0,0).

Таблица 3 – Активность воды (a w) в пищевых продуктах

Кривые, показывающие связь между содержанием влаги (масса воды, г Н 2 0/г СВ) в пищевом продукте с активностью воды в нем при постоянной температуре, называются изотермами сорбции. Информа­ция, которую они дают, полезна для характеристики процессов концен­трирования и дегидратации (т.к. простота или трудность удаления воды связана с a w), а также для оценки стабильности пищевого продукта. На рис. 10.5 изображена изотерма сорбции влаги для продуктов с высокой влажностью (в широкой области влагосодержания).

Рисунок 1. Изотерма сорбции влаги для продуктов с высокой влажностью

Однако, с учетом наличия связанной влаги, больший интерес пред­ставляет изотерма сорбции для области низкого содержания влаги в пи­щевых продуктах (рис. 1)

Рисунок 2.Изотерма сорбции влаги для области низкого содержания влаги в пищевых продуктах.

Для понимания значения изотермы сорбции полезно рассмотреть зоны I-III.

Свойства воды в продукте сильно отличаются по мере перехода от зоны I (низкие влагосодержания) к зоне III (высокая влажность). Зона I изо­термы соответствует воде, наиболее сильно адсорбированной и наибо­лее неподвижной в пищевых продуктах. Эта вода абсорбирована, благо­даря полярным вода-ион и вода-диполь взаимодействиям. Энтальпия па­рообразования этой воды много выше, чем чистой воды, и она не замер­зает при - 40°С. Она неспособна быть растворителем, и не присутствует в значительных количествах, чтобы влиять на пластичные свойства твер­дого вещества; она просто является его частью.

Высоковлажный конец зоны I (граница зон I и II) соответствует мо­нослою влаги. В целом зона I - соответствует чрезвычайно малой части всей влаги в высоковлажном пищевом продукте.

Вода в зоне II состоит из воды зоны I и добавленной воды (ресорбция) для получения воды, заключенной в зону II. Эта влага образует мультислой и взаимодействует с соседними молекулами через вода-вода-водородные связи. Энтальпия парообразования для мультислойной воды несколько больше, чем для чистой воды. Большая часть этой воды не замерзает при - 40°С, как и вода, добавленная к пищевому про­дукту с содержанием влаги, соответствующим границе зон I и II. Эта вода участвует в процессе растворения, действует как пластифицирую­щий агент и способствует набуханию твердой матрицы. Вода в зонах IIи I обычно составляет менее 5% от общей влаги в высоковлажных пищевых продуктах.

Вода в зоне III изотермы состоит из воды, которая была в зоне I и II, и добавленной для образования зоны III. В пищевом продукте эта вода наи­менее связана и наиболее мобильна. В гелях или клеточных системах она является физически связанной, так что ее макроскопическое течение зат­руднено. Во всех других отношениях эта вода имеет те же свойства, что и вода в разбавленном солевом растворе. Вода, добавленная (или удален­ная) для образования зоны III, имеет энтальпию парообразования прак­тически такую же, как чистая вода, она замерзает и является растворите­лем, что важно для протекания химических реакций и роста микроорга­низмов. Обычная влага зоны III (не важно, свободная или удерживаемая в макромолекулярной матрице) составляет более 95% от всей влаги в вы­соковлажных материалах. Состояние влаги, как будет показано ниже, имеет важное значениедля стабильности пищевых продуктов.

В заключение следует отметить, что изотермы сорбции, полученные добавлением воды (ресорбция) к сухому образцу, не совпадают полно­стью с изотермами, полученными путем десорбции. Это явление назы­вается гистерезисом. Изотермы сорбции влаги для многих пищевых продуктов имеют гистерезис. Величина гистерезиса, наклон кривых, точки начала и конца петли гистерезиса могут значительно изменяться в зависимости от таких факторов, как природа пищевого продукта, температура, ско­рость десорбции, уровень воды, удаленной при десорбции.

Как правило, изотерма абсорбции (ресорбции) нужна при исследо­вании гигроскопичности продуктов, а десорбции - полезна для изуче­ния процессов высушивания.

Активность воды и стабильность пищевых продуктов

С учетом вышесказанного ясно, что стабильность пищевых продук­тов и активность воды тесно связаны.

В продуктах с низкой влажностью могут происходить окисление жи­ров, неферментативное потемнение, потеря водорастворимых веществ (витаминов), порча, вызванная ферментами. Активность микроорганиз­мов здесь подавлена. В продуктах с промежуточной влажностью могут протекать разные процессы, в том числе с участием микроорганизмов. В процессах, протекающих при высокой влажности, микроорганизмам принадлежит решающая роль.

Окисление липидов начинается при низкой a w . По мере ее увели­чения скорость окисления уменьшается примерно до границы зон I и II на изотерме, а затем снова увеличивается до границы зон II и III. Дальнейшее увеличение a w снова уменьшает скорость окисле­ния. Эти изменения можно объяснить тем, что при добавлении воды к сухому материалу сначала имеет место столкновение с кислородом. Эта вода (зона I) связывает гидропероксиды, сталкивается с их продуктами распада и, таким образом, препятствует окислению. Кроме того, добавленная вода гидратирует ионы металлов, которые катализируют окисление, уменьшая их действенность.

Наблюдаемый максимум потемнения может объясняться наступле­нием равновесия в процессе диффузии, которая регулируется величиной вязкости, степенью растворения и массообменом. При низкой активно­сти воды медленная диффузия реагентов замедляет скорость реакции. По мере увеличения влагосодержания более свободная диффузия ускоряет реакцию до тех пор, пока в верхней точке диапазона влажности раство­рение реагентов снова не замедляет ее. Точно так же более высокая кон­центрация воды замедляет ход реакции на тех обратимых стадиях, на ко­торых образуется вода.

Ферментативные реакции могут протекать при более высоком содер­жании влаги, чем влага монослоя, т.е. тогда, когда есть свободная вода. Она необходима для переноса субстрата. Учитывая это, легко понять, по­чему скорость ферментативных реакций зависит от a w .

При a w , соответствующей влаге монослоя, нет свободной воды для переноса субстрата. Кроме того, в ряде ферментативных реакций вода сама играет роль субстрата.

Для большинства бакте­рий предельное значения a w = 0,9, но, например, для St.aureusa w = 0,86. Этот штамм продуцирует целый ряд энтсротоксинов типа А, В, С, D, Е. Боль­шинство пищевых отравлений связаны с токсинами А и D. Дрожжи и плесени могут расти при более низких значениях активности воды.

При хранении пищевых продуктов активность воды оказывает влия­ние на жизнеспособность микроорганизмов. Поэтому актив­ность воды в продукте имеет значение для предотвращения его микро­биологической порчи.

В основном порчу продуктов с промежуточной влажностью вызыва­ют дрожжи и плесени, меньше - бактерии. Дрожжи вызывают порчу си­ропов, кондитерских изделий, джемов, сушеных фруктов; плесени - мяса, джемов, пирожных, печенья, сушеных фруктов (табл. 4).

Таблица 4 - Активность воды и рост микроорганизмов в пищевых продуктах

Область a w Микроорганизмы, которыеингибируются при более низкомзначении a w , чем эта область Пищевые продукты, характерные для этой области a w
1,00-0,95 pseudomonas; Escherichia; фрукты, овощи, мясо, рыба,
Proteus; Shigella, Klebsiella; молоко, домашняя колбаса и хлеб,
Bacillus; Clostridium perfingens; продукты с содержанием сахара
некоторые дрожжи (-40%) и хлорида натрия (~7%)
0,95-0,91 salmonella, Vibrioparahaemolyticus, Сbotulinum,SerratiaLactobacillus, Pediococcus, некоторые грибы,дрожжи (Rhodotorula, Pichia) некоторые сыры, консервированная ветчина, некоторые фруктовые концентраты соков, продукты с содержанием сахара (~55%),хлорида натрия (~12%)
0,91-0,87 многиедрожжи (Candida;Torulopsis, Hansenula)Micrococcus ферментированная колбаса типа салями, сухие сыры, маргарин, рыхлые бисквиты, продукты с содержанием сахара (65%), хлорида натрия (15%).
0,87-0,80 многие грибы(микотоксигенные пенициллы большинство концентратов фруктовых соков, сладкое сгущенное молоко, шоколад, сироп, мука, рис, взбитые изделия с содержанием влаги 15-17%, фруктовые пирож­ные, ветчина
Penicillia); Staphylococcus
Aureus; большинство
Saccharomyces; Debaryomyces
0,80-0,75 большинство галофильных бактерий, микотоксигенные аспергиллы джем, мармелад, замороженныефрукты
0,75-0,65 ксерофильные виды плесеней (грибов) (Asp. chevalieri; Asp. canidus; Wallemiasebi) Saccharomycesbisporus патока, сухие фрукты, орехи
0,65-0,60 осмофильные дрожжи(Saccharomycesrouxii); некоторые плесени (Asp. echinulatus, Monascusbisporus)

сухофрукты, содержащие 15-20%

влаги, карамель, мед

нет микроорганизмов тесто с влажностью 12%, специи с влажностью 10%
0,5
0,4 нет микроорганизмов яичный порошок с влажностью -5%
0,3 нет микроорганизмов печенье, крекеры, сухари с влажностью -3-5%
0,2 нет микроорганизмов сухое молоко с влажностью -2-3%, сухие овощи с влажностью ~5%, зерновые хлопья с влажностью -5%, крекеры

Эффективным средством для предупреждения микробиологической порчи и целого ряда химических реакций, снижающих качество пище­вых продуктов при хранении, является снижение активности воды в пи­щевых продуктах. Для снижения активности воды использу­ют такие технологические приемы, как сушка, вяление, добавление раз­личных веществ (сахар, соль и др.), замораживание. С целью достиже­ния той или иной активности воды в продукте можно применять такие технологические приемы, как:

Адсорбция - продукт высушивают, а затем увлажняют до определенного уровня влажности;

Сушка посредством осмоса - пищевые продукты погружают в раство­ры, активность воды в которых меньше активности воды пищевых про­дуктов.

Часто для этого используют растворы Сахаров или соли. В этом случае имеет место два противотока: из раствора в продукт диффундирует растворенное вещество, а из продукта в раствор - вода. К сожалению, природа этих про­цессов сложна, и в литературе нет доста­точных данных по этому вопросу.

Для достижения требуемой активно­сти воды добавляют различные ингредиенты в продукт, обработанный одним из указанных выше способов, и дают ему возможность прийти в равновесное со­стояние, т.к. один лишь процесс сушки часто не позволяет получить нужную кон-систенцию. Применяя увлажнители, можно увеличить влажность продукта, но снизить a w . Потенциальными увлажнителями для пищевых продуктов являются крахмал, молочная кислота, сахара, глицерин и др.

Роль льда в обеспечении стабильности пищевых продуктов

Замораживание является наиболее распространенным способом консервирования (сохранения) многих пищевых продуктов. Необходимый эффект при этом достигается в большей степени от воздействия низкой температуры, чем от образования льда. Образование льда в клеточных структурах пищевых продуктов и гелях имеет два важных следствия:

а) не­водные компоненты концентрируются в незамерзающей фазе (незамерзающая фаза существует в пищевых продуктах при всех температурах хранения);

б) вся вода, превращаемая в лед, увеличивается на 9% в объеме.

Во время замораживания вода переходит в кристаллы льда различ­ной, но достаточно высокой степени чистоты. Все неводные компонен­ты поэтому концентрируются в уменьшенном количестве незамерзшей воды. Благодаря этому эффекту, незамерзшая фаза существенно изменя­ет такие свойства, как рН, титруемая кислотность, ионная сила, вязкость, точка замерзания, поверхностное натяжение, окислительно-восстанови­тельный потенциал. Структура воды и взаимодействие «вода - растворен­ное вещество» также могут сильно изменяться.

Эти изменения могут увеличить скорости реакций. Таким образом, замораживание имеет два противоположных влияния на скорость реакций: низкая температура как таковая будет ее уменьшать, а концентри­рование компонентов в незамерзшей воде - иногда увеличивать. Так, в ряде исследований показано увеличение при заморажива­нии скорости реакций неферментативного потемнения, имеющих место при различных реакциях.

Фактор возможности увеличения скорости различных реакций в замороженных продуктах необходимо учитывать при их хранении, посколь­ку этот фактор будет влиять на качество продуктах.

Многочисленными исследованиями показано, что существенное снижение скорости реакций (более чем в 2 раза) имеет место при хранении пищевых продуктов в условиях достаточно низкой темпера­туры (-18°С).

При отрицательных температурах, достаточно близких к темпера­туре замерзания воды (0°С) имеет место увеличение доли несолюбилизованного белка. При температуре - 18°С инсолюбилизация белка уменьшается существенно, и это создает оптимальные условия для хра­нения продуктов.

Методы определения влаги в пищевых продуктах

Определение общего содержания влаги

Высушивание до постоянной массы.Содержание влаги рассчитывают по разности массы образца до и после высушивания в сушильном шкафу при температуре 100- 105°С. Это - стандартный метод определения вла­ги в техно-химическом контроле пищевых продуктов. Поскольку в ос­нове метода лежит высушивание образца до постоянной массы, метод требует много времени для проведения анализа.

Титрование по модифицированному методу Карла Фишера.Метод ос­нован на использовании реакции окисления-восстановления с участи­ем йода и диоксида серы, которая протекает в присутствии воды. Использование специально подобранных органических реагентов позво­ляет достигнуть полного извлечения воды из пищевого продукта, а ис­пользование в качестве органического основания имидазола способ­ствует практически полному протеканию реакции. Содержание влаги в продукте рассчитывается по количеству йода, затраченному на титро­вание. Метод отличается высокой точностью и стабильностью резуль­татов (в том числе при очень низком содержании влаги) и быстротой проведения анализа.

Определение свободной и связанной влаги

Дифференциальная сканирующая калориметрия.Если образец охладить до температуры меньше 0°С, то свободная влага замерзнет, связанная - нет. При нагревании замороженного образца в калориметре можно из­мерить тепло, потребляемое при таянии льда. Незамерзающая вода оп­ределяется как разница между общей и замерзающей водой.

Термогравиметрический метод.Метод основан на определении скоро­сти высушивания. В контролируемых условиях граница между областью постоянной скорости высушивания и областью, где эта скорость снижа­ется, характеризует связанную влагу.

Диэлектрические измерения.Метод основан на том, что при 0°С зна­чения диэлектрической проницаемости воды и льда примерно равны. Но если часть влаги связана, то ее диэлектрические свойства должны силь­но отличаться от диэлектрических свойств объемной воды и льда.

Измерение теплоемкости.Теплоемкость воды больше, чем теплоем­кость льда, т.к. с повышением температуры в воде происходит разрыв во­дородных связей. Это свойство используют для изучения подвижности молекул воды. Значение теплоемкости воды в зависимости от ее содержания в полимерах дает сведения о количестве связанной воды. Если при низких концентрациях вода специфически связана, то ее вклад в тепло­емкость мал. В области высоких значений влажности ее в основном опре­деляет свободная влага, вклад которой в теплоемкость примерно в 2 раза больше, чем льда.

ЯМР.Метод заключается в изучении подвижности воды в неподвиж­ной матрице. При наличии свободной и связанной влаги получают две линии в спектре ЯМР вместо одной для объемной воды.

Заключение

Содержание воды в пищевых продуктах должно быть определенным. Уменьшение или увеличение содержания воды влияет на качество продукта. Так, товарный вид, вкус и цвет моркови, зелени, плодов и хлеба ухудшаются при снижении влажности, а крупы, сахара и макаронных изделий - при ее увеличении. Многие продукты способны поглощать пары воды, т. е. обладают гигроскопичностью (сахар, соль, сухофрукты, сухари). Так как влажность влияет на питательную ценность пищевых продуктов, а также на сроки и условия хранения, она является важным показателем в оценке их качества.

Содержание воды в пищевых продуктах в процессе их перевозки и хранения не остается постоянным. В зависимости от особенности самих продуктов, а также условий внешней среды они теряют влагу или увлажняются. Высокой гигроскопичностью (способностью поглощать влагу) обладают продукты, содержащие много фруктозы (мед, карамель), а также сушеные плоды и овощи, чай, поваренная соль. Эти продукты хранят при относительной влажности воздуха не выше 65-70 %

Активность воды - один из самых критических параметров в определении качества и безопасности товаров, которые потребляются каждый день. Водная активность затрагивает срок годности, безопасность, структуру и запах пищевых продуктов. Это также жизненно важно для стабильности фармацевтических препаратов и косметики. Поскольку активность воды столь важна, необходимо измерить ее точно и быстро

Количество воды во многих продуктах, как правило, нормируется стандартами с указанием верхнего предела ее содержания, так как от этого зависят не только качество и сохраняемость, но и пищевая ценность продуктов.

Список литературы:

1. Вода в пищевых продуктах / Под редакцией Р.Б. Дакуорта. - Перевод с англ. - М.: Пищевая промышленность,1980. - 376 с.

2. Гинзбург A.C., Громов М.А., Красовская Г.И. Теплофизические характеристики пищевых продуктов: Справочник. - М.: Агропромиздат, 1990. -287 с.

3. Ляйстнер, Л. Барьерные технологии: комбинированные методы обработки, обеспечивающие стабильность, безопасность и качество продуктов питания / Л. Ляйстнер, Г. Гоулд. - Перевод с англ. - М.: ВНИИ мясной промышленности им. В.М. Горбатова, 2006. - 236 с.

4. Моик И.Б. Термо и влагометрия пищевых продуктов. Под ред. И.А.Рогова-М.: Агропромиздат, 1988. - 303 с.

5. Пищевая химия/Нечаев А.П., Траубенберг С.Е., Кочеткова А.А. и др.Под ред. А.П. нечаева.Издание 3-е,испр.- СПб.:ГИОРД, 2004. – 640с.

6. Ребиндер, П.А. О формах связи воды с материалом в процессе сушки / В кн. Всес. совещание по интенсивности процессов и улучшение качества материалов при сушке в основных отраслях промышленности и сельского хозяйства. - М.: Профиздат, 1958. -483с.

7. http://labdepot.ru/lab/water1.html

8. http://www.upack.by/articles.php

9. http://www.giord.ru/0419205820310.php

10. http://labdepot.ru/lab/water1.html


Вода имеет важное значение для существования всех живых организмов. Она участвует в процессах кровообращения, дыхания, пищеварения и др. Вода содержится во всех пищевых продуктах независимо от их происхождения. От содержания воды зависят качество и стойкость при хранении и транспортировании продовольственных товаров. В продовольственных товарах вода находится в свободном и связанном состоянии. Свободная вода - это вода, обладающая теми же свойствами, что и чистая вода. Она находится в виде мельчайших капель в клеточном соке и межклеточном пространстве. В ней растворены органические и минеральные вещества. Большая часть воды в продовольственных товарах находится в связанном состоянии и удерживается тканями с различной силой. Связанная вода находится в микрокапилярах, адсорбируется внутриклеточными системами и удерживается коллоидами белков и углеводов. Она не является растворителем, имеет более низкую температуру замерзания, чем свободная вода, не усваивается микроорганизмами и положительно влияет на сохраняемость продуктов. Удаление связанной воды из продукта приводит к потере его качества (черствение хлеба). Продовольственные товары должны содержать воду в определенных пределах. Так, содержание ее (в %): в зерне и муке - 12-15, печеном хлебе - 23-48, свежих плодах - 75-90, сушеных - 12-25, свежих овощах - 65-90, молоке - 87-90, сливочном масле - 16-35. Очень мало воды в сахаре - 0,1-0,4%, растительных маслах - 0,1-0,2 и животных жирах - 0,2-0,3%. Уменьшение содержания воды ниже этих пределов в свежих плодах и овощах приводит к их увяданию, а увеличение воды в сахаре-песке вызывает потерю сыпучести и даже утечку. Таким образом, различные продовольственные товары обладают разной гигроскопичностью, что имеет важное значение для разработки рациональных условий их упаковки, хранения и реализации. Питьевая вода. Вода является средой, в которой протекают все обменные процессы организма человека. Суточная потребность в воде взрослого человека составляет около 2 л. Если без пищи человек выдерживает несколько недель, то без воды - несколько суток.

  • Вода в пищевых продуктах . Вода
    В продовольственных товарах вода находится в свободном и связанном состоянии.


  • Вода в пищевых продуктах .
    Углеводы в продовольственных товарах . Углеводы - источники энергии, составляют основную часть в продуктах растительного происхождения и большую (количественно) часть рациона питания.


  • Самым лучшим белком по пищевой ценности считается белок молока, далее следует белок яйца, рыбы, мяса. Белков нет совсем в следующих продуктах : сахар, соль, крахмал, жиры.
    Их делят по растворимости на следующие группы: Альбумины - растворяются в воде .


  • Он частично синтезируется бактериями кишечника. В продуктах биотин представлен широко, но в небольших количествах (в печени, мясе, молоке, картофеле и др.). Витамин устойчив к кулинарной обработке. Жирорастворимые витамины.


  • Вода в пищевых продуктах . Вода имеет важное значение для существования всех живых организмов.
    Спрос населения на товары


  • Вода в пищевых продуктах . Вода имеет важное значение для существования всех живых организмов. Она участвует в процессах кровоо. Классификация товаров - принципы, методы, системы.


  • На сохраняемость пищевых продуктов влияют их химический состав и интенсивность протекающих в них про.
    Наибольшее количество йода сконцентрировано в морской воде , морских водорослях, рыбе и нерыбных объектах промысла.


  • Процессы, происходящие при хранении товаров . На сохраняемость пищевых продуктов влияют их химический состав и интенсивность
    В первую группу входят скоропортящиеся продукты , содержание большое количество воды : плоды, овощи, мясо, молоко и др.


  • Вода в пищевых продуктах . Вода имеет важное значение для существования всех живых организмов.
    Спрос населения на товары - это форма проявления потребно¬стей, обеспеченная денежным эквивалентом. ... подробнее ».


  • Принципы и методы консервирования пищевых продуктов (биоз, абиоз, анабиоз, физические, физико-химические, биохимические, комбинированные), их
    Сахароза – сильный дегидрататор, хорошо поглощает воду , в результате в среде повышается осмотическое давление.

Найдено похожих страниц:10


Вода, не являясь собственно питательным веществом, жизненно необходима как стабилизатор температуры тела, переносчик нутриентов (питательных веществ) и пищеварительных отходов, реагент и реакционная среда в ряде химических превращений, стабилизатор конформации биополимеров и, наконец, как вещество, облегчающее динамическое поведение макромолекул, включая проявление ими каталитических свойств.

Вода важная составляющая пищевых продуктов . Она присутствует в разнообразных растительных и животных продуктах как клеточный и внеклеточный компонент, как диспергирующая среда и растворитель, обуславливая их консистенцию и структуру и влияя на внешний вид, вкус и устойчивость продукта при хранении. Благодаря физическому взаимодействию с белками, полисахаридами, липидами и солями, вода вносит значительный вклад в текстуру пищевых продуктов, формируя их консистенцию. Содержание воды в пищевых продуктах изменяется в широких пределах.

Таблица 6 Содержание влаги в пищевых продуктах

В пищевых продуктах вода может находиться в свободном и связанном состоянии. Свободная вода в виде мельчайших капель содержится в клеточном соке и межклеточном пространстве. В ней растворены органические и минеральные вещества. При высушивании и замораживании свободная вода легко удаляется. Плотность свободной воды – около 1 г/см 3 , температура замерзания – около 0 о С.

Связаннойназывают воду , молекулы которой физико-химически связаны с гидрофильными группами белков и углеводов. Связанная вода обладает аномальными свойствами, не растворяет соли, замерзает при температуре -40 о С и ниже, имеет плотность 1,2 г/см 3 и более. При высушивании и замораживании связанная вода не удаляется.

При хранении переработке пищевых продуктов вода из одного состояния может переходить в другое, вызывая изменения свойств этих товаров. Так, при варке картофеля и выпечке хлеба часть свободной воды переходит в связанное состояние в результате набухания беков, клейстеризации крахмала. При оттаивании замороженного картофеля или мяса часть связанной воды переходит в свободное состояние. Свободная вода создает благоприятные условия для развития микроорганизмов и деятельности ферментов . Поэтому продукты, содержащие много воды, являются скоропортящимися.



Содержание воды (влажность) является важным показателем качества продукта. Пониженное или повышенное ее содержание сверхустановленной нормы ухудшает качество продуктов. Например, мука, крупа, макаронные изделия с повышенной влажностью быстро портятся. Уменьшение влаги в свежих плодах и овощах приводит к их увяданию. Вода снижает энергетическую ценность продукта, но придает ему сочность, повышает усваиваемость.

Контрольные вопросы:

1. Почему вода обладает аномально высокой теплоемкостью?

2. О чем свидетельствует диаграмма состояния воды?

3. Что такое тройная точка воды?

4. Какую роль играет вода в пищеварении?

5. Какие функции выполняет вода в составе пищевых продуктов?

6. Чем отличается связанная вода от свободной воды?

7. Что означает термин «активность» воды?

8. Какие процессы протекают в продуктах с высокой активностью воды?

9. Какие процессы могут иметь место в продуктах с низкой активностью?

10. Какие процессы протекают в продуктах с промежуточной активностью воды?

11. Какие методы используют для повышения содержания связанной воды в продуктах?

Литература: 1 – с. 461- 491.

Список литературы:

1. Пищевая химия/ Нечаев А.П., Траубенберг С.Е., Кочеткова А.А. и др. Под ред. А.П.Нечаева. – СПб.: ГИОРД, 2004.- 640 с., С. 8-16

2. Скурихин И.М., Нечаев А.П. Все о пище с точки зрения химика. – М.: Высшая школа, 1991.- 287 с., С. 3-7.



3. Дубцов Г.Г.Товароведение пищевых продуктов. – М.: Изд-во «Мастерство», 2001.-263 с., С.3-95.

4. Павловский П.Е., Пальмин В.В. Биохимия мяса. – М.: Пищевая промышленность, 1975.- 387 с.

5. Антипова Л.В., Жеребцов Н.А. Биохимия мяса. – М.: Пищевая промышленность, 1991. – 372 с.

6. Горбатова К.К. Биохимия молока. – М.: Пищевая промышленность, 1986.- 275 с.

7. Дмитриченко М.И., Пилипенко Т.В. Товароведение и экспертиза пищевых жиров, молока и молочных продуктов. – СПб., ПИТЕР, 2004.- 350 с.

Чтобы ответить на вопрос, есть ли вода в продуктах питания , можно открыть поваренную книгу и рассмотреть в ней цветную таблицу с надписью: «Питательная ценность продуктов». В ней как и на глобусе, преобладает голубой цвет воды над желтым, коричневым, красным и зеленым цветом «твердых масс» белка, жира, углеводов и минеральных веществ.

Самый большой процент воды в растительной пище , а именно в , грибах, и фруктах - почти 90 процентов . Поэтому-то сушеные овощи и фрукты такие легкие. Если съесть килограмм овощей, то организм получит количество жидкости равноценное литру выпитого молока.

Все ученые, специалисты по питанию, считают важнейшим продуктом питания для детей. В нем содержится все, что необходимо растущему организму; белок и сахар, минеральные соли, жир, и вода . В молоке содержится 85-90 процентов воды , остальное твердые вещества.

Все знают, как мы получаем молоко. Каждый из нас видел, как доят корову, козу или овцу. Но есть и такое молоко, которое «растет» на деревьях. Существуют растения-коровы. Хотя их и нельзя доить, они дают молоко, масло, сыр и другие продукты.

Молоко, которое «растет» на деревьях, - это сок кокосового ореха. Из мясистой части ореха приготовляют кокосовое масло - «пальмин» .

Растение-корова, у которого нет ни ног, ни вымени, - это соевые бобы. Родина их - Китай. из сваренных и перемолотых соевых бобов получают соевое молоко . Его сгущают и хранят в консервных банках. Но лучше всего из соевых бобов получать масло, потому что воды в них только 10 процентов .

Наше масло, которое изготовляется из сливок, содержит 14 процентов воды . Воду из сливок удаляют с помощью сепаратора.

О можно многое рассказать, но что касается содержание воды в мясных продуктах , то исследование тарелки мясного супа очень разочаровало бы нас. В ней 20 ложек воды и только одна ложка питательных веществ! В коровьем мясе оказалось столько же воды, сколько в человеческом теле. Но зато в нем 20 процентов белка, - вдвое больше, чем в курином мясе .

«Жидкий» хлеб

Из наших основных продуктов питания хлеб содержит в два раза больше питательных веществ и в два раза меньше воды, чем картофель . Большая часть воды удаляется из зерна в сушилах. Недаром в старой немецкой поговорке говорится: «Ешь хлеб с солью и будешь краснощеким».

Необходимо упомянуть и о «жидком» хлебе . Он изготовляется из ячменя. Искусственно проращивая его и добавляя воду, ячмень превращают в коричневый сироп, солод . Солод - важнейший продукт в пивоварении, известный с глубокой древности. Шесть тысяч лет тому назад в Древнем Вавилоне можно было пить 16 различных сортов «жидкого» хлеба. Существует и другой, широко распространенный вид «жидкого» хлеба - солодовый кофе . Его делают также из проращенного ячменя.

С таким же успехом можно было бы продолжать осмотр кладовой продуктов еще несколько часов. Ведь нет ни одного продукта питания, который не содержал бы воду! Итак, исследование показывает, что большую часть воды, необходимой для нашего организма люди получают с пищей .

Входит в состав всех пищевых продуктов. По занимаемому ею объему в общей массе многих пищевых продуктов вода - наиболее значительный компонент, и она оказывает влияние на многие качественные характеристики их, особенно на консистенцию и структуру. Наиболее высокое содержание воды характерно для плодов и овощей (72-95 %), молока (87-90 %), мяса (58-74 %), рыбы (62-84 %). Значительно меньше воды находится в маргарине, сливочном масле (15,7-32,6 %), крахмале (14-20 %), зерне, муке, крупе, макаронных изделиях, сушеных плодах, овощах и грибах, орехах (10-14 %), чае (8,5 %). Минимальное количество воды содержится в сухом молоке (4,0 %), карамели леденцовой (3,6 %), поваренной соли (3,0 %), кулинарных жирах (0,3 %), растительном масле и сахаре (0,1 %).

В животных и растительных тканях вода является наиболее изменяющимся компонентом химического состава. Например, в картофеле в зависимости от хозяйственно-ботанического сорта, района выращивания, почвы, климатических условий и вегетационного периода количество воды колеблется от 67 до 83 %.

В продуктах, изготовленных из растительного и животного сырья, - сахаре, кондитерских изделиях, сырах и др. - содержание воды регламентируется стандартами.

Для многих пищевых продуктов содержание воды (влажность) является важным показателем качества. Пониженное или повышенное содержание воды против установленной нормы для продукта вызывает ухудшение его качества. Например, понижение влаги в мармеладе и джеме ухудшает их консистенцию и вкус, потеря влаги свежими плодами и овощами на 5-7 % уменьшает тургор клеток, поэтому они становятся вялыми, дряблыми, качество их резко снижается и они быстро портятся.

Продукты с высоким содержанием воды нестойки при хранении, так как в них быстро развиваются микроорганизмы . Вода способствует ускорению химических, биохимических и других процессов в пищевых продуктах. Сырые мясо и рыба легко поражаются бактериями, а плоды и овощи - плесневыми грибами.

Продукты с малым содержанием воды лучше сохраняются, долго сохраняются мука, крупа, макаронные изделия, сушеные плоды и овощи и другие продукты, при повышенной влажности эти продукты при хранении быстро плесневеют.

Однако часто различные пищевые продукты с одним и тем же содержанием влаги хранятся по-разному. Было установлено, что имеет значение, какими формами связи связана вода с основными веществами пищевых продуктов. Чтобы учесть эти факторы, в начале 50-х годов прошлого столетия появилось новое понятие - активность воды, обозначаемое знаком а w . Активность воды а w выражается отношением давления паров воды над данным продуктом к давлению паров воды над чистой водой при одной и той же температуре. Активность воды характеризует состояние воды в пищевых продуктах и определяет доступность ее для химических, физических и биологических реакций . Обычно, чем больше воды находится в связанном состоянии, тем меньше ее активность. Но даже связанная вода при некоторых условиях может обладать известной активностью.


По активности воды пищевые продукты делят на три группы:

1. Свежие пищевые продукты, богатые водой, в которых ее активность составляет 0,95-1,0. К ним относятся свежие овощи, фрукты, соки, молоко, мясо, рыба и др.;

2. Переработанные пищевые продукты с активностью воды 0,90-0,95. К ним относятся хлеб, вареные колбасы, ветчина, творог и др.;

3. Пищевые продукты с активностью воды до 0,90. К ним относятся сыр, сливочное масло, копченые колбасы, сухие фрукты и овощи, крупа, мука, варенье и др. Активность воды в этих продуктах чаще 0,65-0,85, а содержание влаги составляет 15-30 %.

Для предупреждения ряда физико-химических, биохимических реакций, снижающих качество пищевых продуктов при хранении, их микробиологической порчи, эффективным средством является снижение активности воды в пищевых продуктах. Для этого используют сушку, вяление, добавление различных веществ (соль, сахар и др.), замораживание. Низкая активность воды сдерживает развитие микроорганизмов и физико-химические и биохимические реакции. Для каждого вида микроорганизмов существует нижний порог активности воды, ниже которого их развитие прекращается.

Помимо влияния на происходящие при хранении пищевых продуктов процессы, активность воды имеет значение и для текстуры продуктов. Максимальная активность воды, допустимая в сухих продуктах без потери желаемых свойств - это 0,34-0,50, в зависимости от продукта (сухое молоко, крекеры). Большая активность воды необходима для продуктов мягкой текстуры, которые не должны обладать хрупкостью.

Пищевые продукты обладают гигроскопичностью . Под гигроскопичностью понимают свойства продуктов поглощать из окружающей атмосферы и удерживать водяные пары. Гигроскопичность зависит от физико-химических свойств продуктов, их строения, наличия в них связывающих воду веществ, а также от температуры, влажности и давления окружающего воздуха.

В процессе хранения пищевых продуктов создается равновесное влагосодержание, при котором не происходит поглощения влаги продуктами из окружающей среды, а из продуктов влага не переходит в окружающую среду. Такое состояние наступает тогда, когда давление водяного пара над продуктами будет равно парциальному давлению водяного пара в окружающем пространстве при одинаковой температуре окружающего воздуха и продукта.

Равновесная влажность продуктов носит динамичный характер, так как она меняется в зависимости от внешних условий - влажности, температуры воздуха и давления, а также от физико-химических свойств продукта. При изменении внешних условий равновесная влажность продуктов изменяется, а затем вновь устанавливается на новом уровне.

При выборе условий хранения пищевых продуктов рекомендуется создавать такую относительную влажность воздуха, при которой продукты не подвергаются порче микроорганизмами и не снижают своего качества вследствие усыхания, увядания или слишком большого увлажнения. Так, при хранении муки относительная влажность воздуха должна быть 70 %, свежего картофеля и яблок - 90-95, зеленых овощей - 100 % .

Чай
Для любых предложений по сайту: [email protected]