Каротины и каротиноиды. Всё, что вы должны знать о каротиноидах

Наряду с зелеными пигментами в хлоропластах и хроматофорах содержатся пигменты, относящиеся к группе каротиноидов. Кароти ноиды - это желтые и оранжевые пигменты алифатического строе­ния, производные изопрена. Каротиноиды содержатся во всех выс­ших растениях и у многих микроорганизмов. Это самые распростра­ненные пигменты с разнообразными функциями. Каротиноиды, содержащие кислород, получили название ксантофиллов. Основными представителями каротиноидов у высших растений являются два пиг­мента -β-каротин (оранжевый) С 40 Н 56 и ксантофилл (желтый) С 40 Н 56 О 2 . Каротин состоит из 8 изопреновых остатков. При разрыве углеродной цепочки пополам и образовании на конце спирто­вой группы, каротин превращается в 2 молекулы витамина А. Обра­щает на себя внимание сходство в структуре фитола - спирта, входя­щего в состав хлорофилла, и углеродной цепочки, соединяющей циклогексениловые кольца каротина. Предполагается, что фитол возни­кает как продукт гидрирования этой части молекулы каротиноидов. Каротиноиды имеют большое количество конъюгированных двойных связей, поэтому они способны к окислительно-восстановительным реакциям. Поглощение света каротиноидами, а, следовательно, их окраска также обусловлены наличием конъюгированных двойных связей, β-каротин имеет два максимума поглощения, соответствую­щие длинам волн 482 и 452 нм. Красные лучи, поглощаемые хлорофиллами, каротиноиды не поглощают. Каротиноиды, в отличие от хлорофилла, не обладают способностью к флюоресценции. Подобно хлорофиллу каротиноиды в хлоропластах вступают во взаимодейст­вие с белками.

Физиологическая роль каротиноидов. Уже тот факт, что кароти­ноиды всегда присутствуют в хлоропластах, позволяет считать, что они принимают участие в процессе фотосинтеза. Однако не отмече­но ни одного случая, когда в отсутствии хлорофилла этот процесс осуществляется, поэтому считают, что роль каротиноидов вспомога­тельная.

В настоящее время предполагается, что каротиноиды, поглощая определенные участки солнечного спектра, передают энергию этих лучей на молекулы хлорофилла. Тем самым они способствуют ис­пользованию лучей, которые хлорофиллом не поглощаются.

Физиологическая роль каротиноидов не ограничивается их уча­стием в передаче энергии на молекулы хлорофилла. На свету происходит вза­имопревращение ксантофиллов (виолоксантин превращается в зеаксантин), что сопровождается выделением кислорода. Спектр действия этой реакции совпадает со спектром поглощения хлорофилла, что позволило высказать предположение об ее участии в процессе фото­синтеза.

Имеются данные, что каротиноиды выполняют защитную функ­цию, предохраняя различные органические вещества, в первую оче­редь молекулы хлорофилла, от разрушения на свету в процессе фото­окисления. Опыты, проведенные на мутантах кукурузы и подсолнеч­ника, показали, что они содержат протохлорофиллид (темновой пред­шественник хлорофилла), который на свету переходит в хлоро­филл а , но разрушается. Последнее связано с отсутствием способно­сти исследованных мутантов к образованию каротиноидов.

Ряд исследователей указывает, что каротиноиды играют опреде­ленную роль в половом процессе у растений. Известно, что в период цветения высших растений содержание каротиноидов в листьях уменьшается. Одновременно оно заметно растет в пыльниках, а так­же в лепестках цветков. Микроспорогенез тесно связан с метаболизмом каротиноидов. Незрелые пыльце­вые зерна имеют белую окраску, а созревшая пыльца - желто-оран­жевую. В половых клетках водорослей наблюдается дифференциро­ванное распределение пигментов. Мужские гаметы имеют желтую окраску и содержат каротиноиды. Женские гаметы содержат хлоро­филл. Высказывается мнение, что именно каротин обусловливает под­вижность сперматозоидов. Материнские клет­ки водоросли хламидомонады образуют половые клетки (гаметы) первоначально без жгутиков, в этот период они еще не могут пере­двигаться в воде. Жгутики образуются только после освещения гамет длинноволновыми лучами, которые улавливаются особым каротиноидом - кроцином.

Образование каротиноидов. Синтез каротиноидов не требует све­та. При формировании листьев каротиноиды образуются и накапли­ваются в пластидах еще в тот период, когда зачаток листа защищен в почке от действия света. При начале освещения образование хлорофилла в этиолированных проростках сопровождается временным падением содержания каротиноидов. Однако затем содержание каро­тиноидов восстанавливается и даже повышается с увеличением интен­сивности освещения. Показана тесная зависимость образования каро­тиноидов от азотного обмена. Установлено, что между содержанием белка и каротиноидов имеется прямая коррелятивная связь. Потеря белка и каротиноидов в срезанных листьях идет параллельно. Обра­зование каротиноидов зависит от источника азотного питания. Более благоприятные результаты по накоплению каротиноидов получены при выращивании растений на нитратном фоне по сравнению с амми­ачным. Недостаток серы резко уменьшает содержание каротиноидов. Большое значение имеет соотношение Са в питательной среде. Относительное увеличение содержания Са приводит к усиленному на­коплению каротиноидов по сравнению с хлорофиллом. Противопо­ложное влияние оказывает увеличение содержания магния.

Энциклопедия «Биология»

Каротиноиды

Природные пигменты жёлтого, оранжевого или красного цвета, синтезируемые бактериями, грибами и зелёными растениями. Делятся на каротины и ксантофиллы. Каротины по химической природе представляют собой ненасыщенные углеводороды, молекулы которых построены из 40 атомов углерода. Богаты каротинами листья шпината, корнеплоды моркови, плоды шиповника. Животные обычно не синтезируют каротины и получают их с пищей, накапливая в жировой ткани, яичном желтке, молоке и др. Из каротина (провитамина А) в животном организме образуется витамин А. Ксантофиллы – окисленные производные каротинов (спирты, альдегиды и т. п.). Содержатся в различных органах растений и в клетках многих микроорганизмов. Каротиноиды служат дополнительными пигментами при фотосинтезе, участвуют в фотозависимых реакциях растений (напр., в тропизмах), окрашивают (вместе с другими пигментами) осеннюю листву растений.

Энциклопедический словарь

Каротиноиды

(от лат. carota - морковь и греч. eidos - вид), группа природных пигментов желтого или оранжевого цвета. По химической природе - изопреноиды; ненасыщенные углеводороды (каротины) или их окисленные производные (ксантофиллы). Синтезируются некоторыми микроорганизмами и всеми растениями, в клетках которых участвуют в фотосинтезе и процессах, связанных с поглощением света (фототаксисы, фототропизмы и др.). Обусловливают окраску плодов, осенней листвы, колоний ряда микробов. В организме животных и человека из каротинов, поступающих с пищей, образуется витамин А.

В обзорной статье В.Г.Ладыгина и Г.Н.Ширшиковой изложены современные представления о функциях каротиноидов - желтых, красных и оранжевых пигментов - у растений. Каротиноиды играют очень важную роль в работе молекулярной машины фотосинтеза. Они выполняют три основные функции: фотозащитную (защищают хлорофилл и другие уязвимые компоненты фотосистем от светового «перевозбуждения»), светособирающую (что позволяет растениям использовать энергию света в синей области спектра - задача, с которой хлорофилл не может справиться без помощи каротиноидов) и структурную (служат необходимыми структурными элементами, «кирпчиками» фотосистем).

Каротиноиды - широко распространенный класс пигментов, встречающийся у бактерий, одноклеточных эукариот, грибов, растений и животных. В отличие от ряда других пигментов, таких как гем (окрашивающий кровь и мышцы млекопитающих в красный цвет) или хлорофилл (ответственный за зеленую окраску растений), молекулы каротиноидов не содержат металлов. Они состоят только из углерода, водорода и кислорода, и их способность «работать» с квантами света определяется системой сопряженных двойных связей между атомами углерода, выстроенными в цепочку. Сопряженными называются двойные связи, разделенные одной простой связью.

Каротиноиды поглощают свет с длиной волны 280–550 нм (это зеленая, синяя, фиолетовая, ультрафиолетовая области спектра). Чем больше в молекуле сопряженных двойных связей, тем больше длина волны поглощаемого света. Соответственно меняется и окраска пигмента. Каротиноиды, имеющие 3–5 сопряженных двойных связей, бесцветны, они поглощают свет в ультрафиолетовой области. Дзета-каротин с семью связями имеет желтую окраску, нейроспорин с девятью связями - оранженвую, ликопин с 11 связями - оранжево-красную.

Функции каротиноидов в живой природе не ограничиваются работой со светом, порой они играют важную роль в обмене веществ (вспомним, например, витамин А - производное бета-каротина). И все же главные их функции (будь то в органах зрения животных или в хлоропластах - органеллах фотосинтеза растений) неразрывно связаны со светом. В статье Ладыгина и Ширшиковой рассматривается роль каротиноидов в хлоропластах - органеллах растительной клетки, которые ведут свое происхождение от симбиотических цианобактерий. Основная функция хлоропластов - фотосинтез, то есть производство органики из углекислого газа за счет энергии солнечного света. В мембранах хлоропластов расположены белково-пигментные комплексы - фотосистемы I и II, в состав которых входят разнообразные белки, а также пигменты - хлорофиллы и каротиноиды.

Хлорофилл - основной фотосинтетический пигмент - сам по себе способен поглощать и использовать свет только в красной области спектра (650–710 нм). Каротиноиды поглощают сине-зеленый свет и передают его энергию хлорофиллам. Эта функция каротиноидов - светособирающая - особенно важна для водорослей, поскольку сине-зеленый свет проникает в толщу воды гораздо глубже, чем красный.

Вторая функция каротиноидов в хлоропластах - светозащитная . Они защищают фотосистемы от световых «перегрузок», которые могут приводить к сверхвозбуждению и сбоям в работе фотосистем. Каротиноиды служат своего рода «аварийными клапанами», позволяющими сбросить избыточную энергию, перевести ее в тепло. Каротиноиды справляются с этой задачей несколькими разными способами: просто «фильтруя» поступающий свет, забирая на себя избыточную световую энергию, или снимая энергию с перевозбужденного хлорофилла. Каротиноиды могут также «тушить» активные формы кислорода, то есть служат антиоксидантами.

Одним из способов, при помощи которых каротиноиды «сбрасывают» лишнюю энергию при избыточном освещении, являются циклические химические реакции, в ходе которых одни каротиноиды превращаются в другие. Самая распространенная из этих реакций получила название виолаксантинового цикла. На сильном свету каротиноид виолаксантин превращается в зеаксантин, при этом выделяется кислород. Когда освещенность снижается, зеаксантин превращается обратно в виолаксантин, при этом кислород поглощается. Обе реакции - и прямая, и обратная - катализируются ферментами, гены которых расположены в хромосоме хлоропласта, а не в центральном (ядерном) геноме растительной клетки.

Третья функция каротиноидов - структурная . Каротиноиды - обязательные структурные компоненты фотосинтетических мембран хлоропластов. Экспериментально показано, что без каротиноидов фотосистемы становятся нестабильными. Молекулы каротиноидов занимают строго определенные положения в фотосистемах, и без них вся конструкция попросту разваливается.

Авторы отмечают, что в последние годы о каротиноидах стало известно много нового, однако целый ряд подробностей еще предстоит выяснить. В частности, не до конца еще понятно эволюционное происхождение каротиноидов, а также биохимических и фотохимических реакций с их участием. Неясно, в какой степени можно использовать каротиноиды в филогенетике, то есть для реконструкции путей эволюционного развития организмов. Во многих старых работах наборы каротиноидов, характерные для той или иной группы организмов, использовались как важный таксономический признак. Не совсем ясно, насколько такие признаки надежны, особенно если учесть, что одни и те же каротиноиды можно встретить, например, в хлоропластах растений и в глазах млекопитающих.

Каротиноиды - липофильные пигменты, которые у растений локализованы в хлоропластах и хромопластах. Их синтезируют все организмы, осуществляющие оксигенный фотосинтез: цианобактерии, водоросли, высшие растения. Кроме того, каротиноиды синтезируют и накапливают многие грибы, например лисички содержат значительное количество (3-каротина и кантаксантина. Животные в большинстве своем не способны синтезировать каротиноиды. Поэтому необходимые им для нормального метаболизма каротиноиды они получают из растений.

Строение и биосинтез каротиноидов

Большинство каротиноидов - тетратерпеноидов, построенных из восьми изопреновых единиц, - имеет углеродную цепь, состоящую из 40 атомов углерода. У многих каротиноидов углеродная полиизопреновая цепь циклизуется на концах, образуя несколько типов иононовых колец. Известно более 600 каротиноидов. Они отличаются расположением пиков поглощения света, которые, тем не менее, всегда находятся в пределах диапазона 400-550 нм (фиолетовый-зеленый). Каротиноиды подразделяются на каротины, состоящие только из атомов углерода и водорода, и ксантофиллы, имеющие в своем составе еще и атомы кислорода в виде гидрокси-, метокси-, эпокси- или кетогрупп.

Каротины обычно оранжевого цвета. Наиболее распространены а- и (3-каротины (рис. 57). У а-каротина есть (3- и?-иононовые кольца, а у (3-каротина - два (3-иононовых кольца. Многие растения содержат ликопин - каротин ярко-красного цвета, не имеющий иононовых колец. Ликопин является интермедиатом в синтезе каротиноидов, включая а- и (3-каротины.

Ксантофиллы разнообразны по цвету: от бледно-желтого до темно-красного, хотя и получили свое название от греческого слова «ксантос», что значит желтый. Например, астаксантин (рис. 57) придает яркий алый цвет лепесткам адониса, а кап- сантин и капсорбин окрашивают плоды перца Capsicum в темно-красный цвет. Наиболее распространены среди ксантофиллов желтые пигменты лютеин, зеаксантин и виолаксантин. Кантаксантин и астаксантин (рис. 57) широко известны благодаря своим антиоксидантным свойствам.

Большое функциональное значение имеют апокаротиноиды - продукты окислительного разрыва углеродной цепи каротиноидов. У растений изученными апокаротиноидами являются 8"-апокаротиналь, а также фитогормоны: аб- сцизовая кислота и стриголактон. Животным и человеку необходимы ретиналь, ретинол и ретиноевая кислота - ретиноиды, собирательно называемые витамином А (рис. 57).

Рис. 57.

У растений синтез каротиноидов происходит в пластидах, где эти пигменты обычно и остаются: в зеленых листьях это хлоропласты, а в плодах, лепестках цветков, корнеплодах - хромопласты. Вначале из пренильных С 5 -блоков при участии изопентенилтрансферазы - геранилгеранилдифосфатсинтазы - синтезируется ге- ранилгеранилдифосфат (рис. 58). Затем две молекулы геранилгеранилдифосфата соединяются «хвостом к хвосту» при участии синтазы фитоина. Далее бесцветный фи- тоин десатурируется и превращается в красный пигмент ликопин с системой конъюгированных двойных связей. Ликопин под действием специфических циклаз может превращаться в а- или (3-каротин. Каротины, в свою очередь, служат предшественниками ксантофиллов, в которые они превращаются при помощи различных оксигеназ: гидроксилаз, эпоксидаз и других. Кроме того, углеродная цепь каротиноидов может

Каротиноиды (от лат. сarota – морковь) – жирорастворимые растительные пигменты желтого, оранжевого, красного цвета, предшественники витамина А.

Эти витамины (группы А) не встречаются в растительных пищевых продуктах. Они содержатся исключительно в продуктах животного происхождения и образуются в организме животного из каротинов. Каротин представляет собой не индивидуальное вещество, а смесь трех изомеров: a-каротина, b-каротина и g-каротина. b-каротин составляет 85% этой смеси.

При гидролитическом расщеплении молекулы b-каротина на две симметричные половины образуются 2 молекулы витамина А (А 1).

b-КАРОТИН

Это превращение происходит в стенках кишечника под действием фермента каротиназы.

Каротины присутствуют во многих растениях, однако в качестве каротиноидного сырья представляют интерес лишь те растения, в которых каротины накапливаются в значительных количествах. Например, морковь, тыква служат промышленным сырьем для выделения каротина в чистом виде. Другие растения, богатые каротином, являются сырьем для получения суммарных препаратов (экстрактов) или используются в форме сборов, настоев, отваров.

Витамин А имеет большое значение в организации полноценного питания и сохранения здоровья человека и животных; он способствует нормальному обмену веществ, росту и развитию организма; обеспечивает нормальную деятельность органа зрения.

Многие растения (тыква, морковь, шпинат, салат, зеленый лук, красный перец, щавель, шиповник, черника, томаты и др.) содержат каротин, являющийся провитамином А. Суточная потребность в витамине А для взрослого человека составляет 0,4-0,7 мг, для детей – 1 мг.

Род. назв. Calendula, ae, f. – уменьшит. форма от лат. Calendae . Так римляне называли первый день каждого месяца. Calendula – это как бы маленькие календы, извещающие о начале дня: у растения соцветие раскрывается днем и закрывается на ночь.

Вид. опред. officinalis, e (аптечный, лекарственный) связано с лечебными свойствами растения.

Встречается под названиями календула.

Ноготки аптечные – культивируемое однолетнее травянистое растение. Все растение железистоопушенное, листья очередные удлиненно-обратнояйцевидные, корзинки одиночные, верхушечные. Цветки золотисто-желтые или оранжевые, крупные, до 5 см в диаметре. Цветки расположены в 2-3 ряда у немахровых и в 10-15 рядов у махровых форм. Плоды семянки, развиваются из краевых язычковых цветков, срединные – бесплодные (обоеполые) и производящие только пыльцу.



Химический состав

Ноготки цветут продолжительное время (более 2 месяцев), поэтому сбор цветков проводят многократно – с начала цветения до заморозков.

При ручном сборе цветочные корзинки обрывают без цветоноса или с цветоносом длиной до 3 см через каждые 3-4 дня в первый период цветения и через 4-6 дней в последующем. За сезон проводят 15-18 сборов – 12-18 ц/га. Собранное сырье очищают от примеси листьев, кусочков стеблей, отцветших корзинок.

Механизированную уборку проводят ромашкоуборочными комбайнами.

Сушат цветки ноготков в сушилках при температуре 50-60(70)°С, реже в воздушных сушилках, разложив на ткани или бумаге слоем в одно соцветие.

Стандартизация

Качество сырья регламентировано требованиями ГФ ХI (экстрактивных веществ, извлекаемых 70% спиртом, не менее 35%).

Лекарственное сырье

Цельные или частично осыпавшиеся корзинки диаметром до 5 см с остатками цветоносов не более 3 см. Обертка серо-зеленая, одно-двухрядная; листочки ее линейные, густоопушенные. Цветоложе слегка выпуклое, голое. Краевые цветки язычковые, длиной 15-28 мм. Срединные цветки трубчатые с пятизубчатым венчиком. Цвет краевых цветков красновато-оранжевый, ярко- или бледно-желтый; срединных – оранжевый, желтовато-коричневый или желтый.

Культивируют ноготки аптечные на Украине, в Молдове, вРеспублике Беларусь.

Хранение

Хранят цветки ноготков в сухих, хорошо проветриваемых помещениях на стеллажах. Срок годности сырья 2 года.



Основное действие . Антисептическое, бактерицидное, противовоспалительное.

Применение

Цветки ноготков применяют как ранозаживляющее, противовоспалительное и бактерицидное средство. Настой применяют как желчегонное, противовоспалительное при желудочно-кишечных заболеваниях и в виде инъекций при свищах; настойку – при ангине, гингивите, для уменьшения кровоточивости десен, в стоматологии для лечения парадонтоза, в терапии – кольпитов, эрозии шейки матки, проктитов; мазь и настойку – при ушибах, порезах, инфицированных ранах, ожогах, фурункулезе. Препарат Калефлон – при язвенной болезни желудка и двенадцатиперстной кишки, при хронических гастритах. Жидкий экстракт ноготков входит в состав комплексного препарата Ротокан , обладающий противовоспа­лительным действием, гемостатическими свойствами, усиливающий процессы регенерации слизистых оболочек. Ротокан – комплекс­ный препарат, в состав которого входят жидкие экстракты ромашки аптечной, тысячелистника и календулы.

Род. назв. Sorbus, i, f. как назв. растения встречается у многих римских авторов. Генетически слово связано с кельт. sor (терпкий) из-за вкуса плодов.

Вид. опред. aucuparia (aucuparius, a, um ) образовано от лат. aucupari (ловить птиц), т.к. плоды рябины применялись для ловли птиц.

Дерево высотой до 6 м, реже кустарник. Листья очередные, непарноперистые. Соцветия – густой щиток. Плоды яблокообразные, шаровидные, яркооранжевые, кислые, горьковатые, слегка вяжущие. Созревают в сентябре и обычно остаются на деревьях до глубокой осени или даже до начала зимы. Распространена почти по всей Европейской части СНГ, на Урале, Кавказе (в горах) и в Сибири. Рябина обыкновенная в Республике Беларусь встречается по всей территории, часто. Разводится как декоративное в садах и парках, вдоль шоссейных дорог.

Химический состав

Плоды рябины богаты каротиноидами, аскорбиновой кислотой (до 200мг %). Содержат витамины Р, В 2 , Е, сахара до 8%, флаво-ноиды, органические кислоты (3,9%), дубильные и горькие вещества; лактон-парасорбиновую кислоту, обладающую антибио-тическим действием, тритерпеновые соединения.

Заготовка, первичная обработка и сушка

Собирают зрелые плоды до заморозков (в августе – сентябре), срезая щитки с плодами, затем их отделяют и очищают от примеси веточек, листьев, плодоножек и поврежденных плодов.

Сушат сырье в сушилках при температуре 60-80°С, в сухую погоду можно сушить в хорошо проветриваемых помещениях, рассыпая тонким слоем на ткани или бумаге. Высушенные плоды не должны быть блеклыми или почерневшими, при сжатии образовывать комки.

Стандартизация

Качество сырья регламентировано ГФ ХI и ГОСТ 6714-74 (влажность не более 18%; золы общей не более 5%; органической примеси не более 0,5%; минеральной не более 0,2 %).

Лекарственное сырье

Согласно требованиям ГОСТа 6714-74, готовое сырье рябины состоит из плодов без плодоножек. Плоды ложные, ягодообразные («яблоко») 2-5-гнездные, округлые или овально-округлые. На верхушке плода видны остатки чашечки в виде пяти малозаметных зубчиков, смыкающихся своими верхушками в центре. В мякоти плода находятся от 2 до 7 слегка серповидноизогнутых, продолговатых, с острыми концами, гладких красновато-бурых семян. Цвет плодов красновато-оранжевый, буровато-красный или желтовато-оранжевый. Запах слабый, свойственный рябине, вкус кисловато-горький.

Хранение

На складах плоды рябины хранят в хорошо проветриваемых помещениях на стеллажах. Срок годности 2 года.

Основное действие . Поливитаминное.

Применение

Плоды рябины – поливитаминное сырье с высоким содержанием b-каротина. Свежие ягоды перерабатывают на витаминный сироп, сухие входят в состав поливитаминных сборов. Засахаренные плоды рябины и варенье из них – диетический продукт, полезный для профилактики и лечения цинги и других авитаминозов. Их можно в перспективе рассматривать как сырье для получения масляного экстракта каротиноидов рябины.

Род. назв. Hippophae, es, f. (греч. hippophaes ) как назв. растения встречается у Диоскорида, у других греч. ученых и писателей. Слово образовано от греч. hippos (лошадь) и phaоs, eos (свет, блеск). Такую этимологию объясняют тем, что в Древней Греции облепихой лечили лошадей, и их шерсть приобретала красивую, блестящую окраску.

Вид. опред. rhamnoides, is (досл. «крушиновидный») образовано от греч. rhamnos (колючий кустарник, крушина) и oides (видный) и связано с тем, что растение представляет собой колючий кустарник. Плоды у растения сидят на коротких плодоножках, как бы облепляя ветви, и отсюда русское «облепиха».

Другие продукты
Для любых предложений по сайту: [email protected]