Главное брожение и снятие семенных дрожжей в цилиндро-конических танках. Технология приготовления пива цкт

Многие эксплуатируют оборудование для розлива, что называется "спустя рукава". Не проводят периодическую очистку и промывку. Забывают менять воду в проточном охладителе и пр. Следствием нарушения правил эксплуатации оборудования являются частые поломки и выход из строя линии.

Сегодня этой статьей начинается цикл статей: "Правильная эксплуатация оборудования - довольные клиенты и рост прибыли"

И так приступим.

Функции газа в системе розлива

Многие наверняка представляют, как работает система пивного оборудования. Все достаточно просто, чтобы пиво наливалось в бокал, или в бутылку необходимо давление в контуре с газом (углекислотой). Давление передается от газового баллона с редуктором, по газовой магистрали к заборной головке (или раздаточной) см. рис 1.

Рис 1. Газовый редуктор

Попадая внутрь кега, газ вытисняет пиво, и оно по трубкам от заборной головки идет уже к крану с пивом (либо к кобре или колонне, либо к пеногасителю).

Также, газовая магистраль может идти и к кранам для беспенного розлива (пеногаситель), в случае их использования в системе. В пеногасителе, углекислотный газ исполняет функцию заполнителя бутылки перед наполнением пива. Газ не дает образовываться пене в бутылке, поддерживая повышенное давление в ней. Подробнее вы можете прочесть в статье о пенагосителях: «Пеногаситель - король малого бизнеса».

Поиск максимально допустимого давления

Разобравшись, какие функции выполняет газовая магистраль, подходим к вопросу из заголовка статьи: «Какое давление нормально в газовой системе». Подсказки можно найти на самом оборудовании, которое составляет систему.

Обратимся к шлангу для подачи газа, в основном на всех высококачественных шлангах нанесена маркировка «max 3 bar», это означает, что максимальное давление, при котором может работать шланг, составляет: 3 бара, или ~3 атмосферы.

Перейдем к главному узлу газовой системы: Газовому редуктору.

Редуктор служит для того чтоб, высокое давление от баллона (50-100 bar), понизить до нормального (как мы пока узнали до 3-ёх бар).

Считывание показания манометров

Обратимся к шкале манометров на редукторе рис 2. Мы видим два манометра, один с большими показателями (А), другой с меньшими (Б).

Рис 2. Газовый редуктор. Маноматры А и Б.

Манометр "А", отвечает за давление в самом баллоне. Большие цифры обусловлены тем, что в баллоне газ находиться под большим давлением в жидком состоянии. На шкале видно, низкое давление (красная зона), составляет 30 бар и ниже. Это индикатор того, что запас углекислоты в баллоне подходит к концу. Если стрелка находиться в красной зоне, это сигнализирует о том, что газ заканчивается скоро баллон потребует замены.

Внимание! При нулевом показателе на заполненном баллоне убедитесь, что вентиль на самом баллоне открыт. При снятие редуктора с баллона убедитесь, что вентиль на болоне плотно закрыт!

Поиск нормального давления в системе

Разобравшись с максимальным давлением, напомню это 3 бара, пытаемся найти хоть какие-то данные о минимальном давлении, в инструкциях к оборудованию, перелистав несколько инструкций, находим косвенное подтверждение нужному давлению в инструкции к проточным охладителям Gamco.

В ней прямо написано: «Откройте подачу углекислоты вентилем на баллоне и установите рассчитанное рабочее давление. Необходимо иметь в виду, что величина давления зависит от сорта пива и длины трубопроводов от КЕГа до разливного крана, поэтому возможна незначительная корректировка полученного значения. Точное значение рабочего давления рассчитывается с помощью специальной линейки ».

Из этого можно получить вывод: уровень давления в магистрали дело исключительно индивидуальное, по опыту, скажу, больше Вас не мучая: Нормальное давление обычно колеблиться от 2 до 2,5 бар!

Как настроить давление

Предлагаю сильно не заостряться на «линейке для давления», и пройти по инструкции дальше, цитирую таблицу поиска неисправности и регулировки охладителя:

Из таблицы можно почерпнуть, как настроить правильное давление в баллоне опытным путем. Обращаю Ваше внимание, система должна быть исправна и проверенна на герметичность и утечки. Остальное оборудование должно быть также исправно.

Подведем итоги:

Нормальное давление в газовой магистрали составляет: 2 - 2,5 бара .

Максимальное допустимое давление составляет 3 бара .

Точная величина подбирается индивидуально и зависит от конфигурации оборудования и условий эксплуатации.

Возникновение ЦКТ

С тех пор, как пивоварение перешло в свою промышленную стадию, основной тенденцией стала разработка новых технологий, позволяющих увеличить рентабельность. Практически все разработки сосредоточились на том, чтобы уменьшить затратную часть пивоварения (удешевление процесса и уменьшение количества работников) и ускорить оборачиваемость оборудования (сократить, по мере возможности, время брожения и дображивания).

Старое классическое немецкое правило пивоварения гласило: «на брожение сусла уходит неделя, а на дображивание пива - столько недель, сколько процентов в начальной экстрактивности сусла». Но уже в XIX веке оно стало неактуальным. Подгоняемые растущей конкуренцией, пивовары стремились максимально ускорить процесс производства пива.

Ярким образцом подобных изысканий служат разработки швейцарского ученого Натана6), который в XIX веке разработал и впервые применил на практике технологию сверхбыстрого пивоварения: весь процесс брожения и дображивания занимал у него всего 10-14 дней (в зависимости от начальной экстрактивности). Путем подбора специального температурного и технологического режима Натан увеличивал скорость прироста дрожжевой массы в 2,5 раза. Молодое пиво он на ранней стадии принудительно избавлял от углекислого газа, в котором в этот период содержатся летучие вещества, являющиеся причиной незрелого вкуса напитка. После этого пиво карбонизировалось чистой углекислотой и отстаивалось. Этот метод широко не прижился. По комментарию чешских специалистов, пиво, сваренное ускоренным методом по Натану «не достигало традиционного качества чешского пива» (думаю, то же самое можно смело сказать и о немецком пиве).

Тем не менее, эта технология в громадной степени обещала ускорить оборачиваемость оборудования, что делало ее в глазах многих пивоваров с коммерческой жилкой очень привлекательной. Это является хорошим показателем того, какое большое значение уже в то время придавалось сокращению общего времени пивоваренного цикла.

По словам Зденека Шубрта, экс-технолога «Plsensky Prazdroj a.s.», первый реально действующий ЦКТ был установлен в 1928 году в Европе на пивоварне «Кулмбах» (Бавария). Размеры этого танка были далеко не такие впечатляющие, как у современных емкостей: его диаметр достигал трех, высота - десяти метров. Емкость танка составляла около 80 кубических метров (800 гектолитров). Также именно специалистам «Кулмбах» приписывается честь выведения нового штамма дрожжей, пригодного для брожения в ЦКТ, где высота столба сусла (а значит - и давления на дрожжевые клетки) значительно возросла. При этом относительная величина дрожжевой клетки была уменьшена практически вдвое.7)

Еще позднее была разработана технология брожения и дображивания под давлением, сокращавшим цикл производства светлого 11%-ного пива до 14-15 дней, а также метод непрерывного брожения для производства пива в промышленных масштабах (в СССР впервые был внедрен в 1973 на «Москворецком пивоваренном заводе»). Сегодня на процесс брожения и дображивания стандартно отводится около 15-20 дней, но тенденция к сокращению времени производственного цикла сохраняется. Наиболее существенным препятствием в этом остается необходимость сохранить качество производимого пива (как минимум). Лучшие возможности в данном плане, как выяснилось, предоставляли цилиндро-конические танки.

Кроме этого, существенную роль в том, чтобы отдать приоритет ЦКТ, сыграл еще один фактор: с развитием пивоваренной промышленности величина существующих емкостей брожения перестала отвечать возросшим потребностям пивоваров. Возникла насущная необходимость в более крупных, а заодно - более экономичных в использовании емкостях. К сожалению, по ряду технических (и технологических) причин бродильные чаны и лагерные танки ограничены в размерах. Все эти причины создали весомые предпосылки для появления цилиндро-конических танков.

Первый опытный экземпляр емкости для брожения большого объема (однофазный способ производства) был изготовлен еще в 1908 году. «Отцом» этого «прародителя ЦКТ» был все тот же швейцарский ученый Натан. Величина емкости составила 100 гектолитров, полный производственный цикл длился 12 дней. Надо сказать, что идея применения в пивоварении емкостей большого объема тогда не прижилась: возникли практически неразрешимые (на то время) проблемы. Прежде всего - с ухудшенным осаждением дрожжей (не была отработана технология) и обеспечением качественного санирования оборудования.

Необходимо заметить, что первые ЦКТ изготавливались из обычной черной стали, покрытой изнутри специальной смолой. Это защитное покрытие нуждалось в регулярном обновлении. В наши дни ЦКТ изготавливаются исключительно из нержавеющей стали. По данным чешского пивовара Ф. Главачека, впервые в Европе нержавеющая сталь нашла применение при изготовлении емкости большого объема в 1957 году. Широкое использование нержавеющей стали привело к перелому в дальнейшем развитии технологий производства пива.

В шестидесятые годы ХХ века наступила «эра ЦКТ» - началось быстрое распространение новой технологии по странам и континентам. Уже в это время ЦКТ разделились на цилиндро-конические танки брожения (ЦКТБ), цилиндро-конические танки лагерные (ЦКТЛ) и уни-танки (соединяющие в себе основные черты ЦКТБ и ЦКТЛ).

Благодаря удачному техническому решению, ЦКТ начали строить на «свежем воздухе». До этого идея вынести бродильные и лагерные емкости «на улицу», вне помещений пивоварни, звучала, по меньшей мере, диковато. Возможность осуществить ее была воспринята чуть ли не как революционная. Дольше всего в пивоваренном процессе длятся фазы брожения и дображивания, поэтому бродильные и лагерные цеха были самыми большими помещениями пивоварни. Традиционно они состояли из отдельных помещений, в которых располагались деревянные бочки или танки.

Теперь не ограниченные габаритами внутренних помещений здания, пивовары пустились в негласное «соревнование» - кто построит ЦКТ большего размера, выпустит больше пива и опередит конкурентов. Уже в то время объемы ЦКТ достигли 5 тысяч гектолитров, диаметр - пяти, а высота - восемнадцати метров. В семидесятые годы в большинстве европейских стран прочно господствовала технология производства пива в ЦКТ.

В те же годы была отработана и приобрела завершенность технология охлаждения ЦКТ, в частности - режим и очередность активации отдельных охлаждающих рубашек и конуса (как известно, грамотное охлаждение ЦКТ способствует хорошему выпадению дрожжевого осадка). Также выяснилось, что ЦКТ помогает достигнуть наименьшей потери горьких веществ (около 10%), предоставляет возможность максимального насыщения пива СО2 и утилизации образующегося при брожении углекислого газа.
Основные преимущества и недостатки ЦКТ

Технический уровень цилиндро-конического танка (и взаимосвязанного с ним оборудования) при условии хорошего знания технологии дает возможность достичь одинаково высокого, стандартного качества производимого пива при самых больших производственных объемах. При этом процесс брожения пива в ЦКТ относительно несложно автоматизировать (как вариант - компьютеризировать). То же самое относится к процессу мойки и санированию танка.

Относительно высокие начальные капиталовложения экономически оправдываются тем, что с помощью ЦКТ можно существенно ускорить процесс ферментации пива, а значит - увеличить объемы его производства. Именно поэтому технология ЦКТ является сегодня наиболее распространенным способом производства пива во всех промышленно развитых странах.

Поставив в свое время танки брожения и холодной выдержки «на попа», конструкторы ЦКТ в громадной степени увеличили эффективность использования производственных площадей. Этот фактор и сегодня является одним из наиболее существенных дополнительных плюсов пивоварения в ЦКТ.

Определенные трудности, которые в свое время возникали у пионеров пивоварения с осаждением дрожжевых клеток в ЦКТ, сегодня успешно преодолеваются с помощью отработанных приемов охлаждения и из разряда проблем перешли в разряд обычных рабочих моментов. Замедленное (относительно классического варианта) размножение дрожжевых клеток компенсируется более высокой аэрацией сусла и большими дозами вносимых дрожжей.

ЦКТ позволяет заметно улучшить экологию рабочих мест, а кроме этого - существенно повысить производительность труда и уменьшить себестоимость продукции. Возможность работы всех рубашек охлаждения в автономных режимах делает режим охлаждения ЦКТ гибким и эффективным. Также к дополнительным достоинствам цилиндро-конических танков относится то, что из этих емкостей можно оперативно отводить осаждающиеся дрожжи.

Среди основных недостатков ЦКТ - невозможность полного устранения дрожжевых дек, образующихся на поверхности бродящего сусла и более длительный (в сравнении с чаном) период осаждения дрожжевых клеток. Кроме этого, в ЦКТБ необходимо резервировать около 20% от общего объема емкости под образующуюся там пену, что заметно снижает производственную эффективность танка. Впрочем, в традиционных бродильных чанах также резервируется около 20% свободного пространства) ЦКТЛ этот недостаток присущ в меньшей степени (свободное пространство 10%).

Если говорить о максимально эффективных условиях применения ЦКТ, следует отдельно подчеркнуть, что весь смысл использования ЦКТ заключается в открытом Натаном эффекте: увеличение гидростатического давления столба пива способствует ускоренному накоплению в нем СО2 при дображивании (в свою очередь, от скорости и степени накапливания СО2 напрямую зависит скорость формирования органолептического букета пива, то есть - его созревания). За счет этого и сокращается длительность пивоваренного цикла. Наиболее простым вариантом для того, чтобы увеличить высоту столба сусла, будет поставить используемую емкость «на попа», получив вместо горизонтального уже цилиндро-конический танк, что, собственно, и проделал Натан.

В этом контексте становится понятным, почему емкость ЦКТ (при стандартных пропорциях танка) должна составлять не менее 20 гектолитров - в противном случае мы не получим необходимой высоты столба пива, который должен запустить механизм ускоренного накопления углекислого газа при повышенном давлении. Также стоит учесть, что при 20-30 гектолитрах всего лишь «будет наблюдаться эффект» ЦКТ. Созревание пива тут ускорится на считанные сутки. По настоящему эффективным ЦКТ становится, начиная со 150-200 гектолитров (объем для среднего, а не мини-пивзавода). Поэтому использование на мини-пивзаводах вертикально расположенных танков брожения и дображивания можно объяснить, прежде всего, желанием расположить оборудование более компактно.

Материалы, использующиеся при изготовлении ЦКТ

Первые ЦКТ изготавливались из обычной черной стали, покрывавшейся изнутри специальным покрытием на основе эпоксидных смол. Такое покрытие нуждалось в регулярном обновлении. Сегодня ЦКТ изготавливаются исключительно из нержавеющей стали (обычно марки DIN 1.4301, но могут использоваться более устойчивые и дорогие AISI 304 или AISI 316L). Как уже говорилось выше, этот материал является достаточно нейтральным и устойчивым к воздействию на него пива и продуктов его брожения, а также - санационных средств.

На сегодня нержавеющая сталь является оптимальным материалом. Тем не менее, следует помнить, что ее применение не всегда исключает возможность появления коррозии. Она может возникнуть:

  • при наличии хлоридных ионов или молекул свободного хлора в нейтральной или кислой среде (плохо подобранные средства санитации);
  • в том случае, если сварка нержавеющей стали проводилась не в атмосфере инертного газа (например - аргона). Тогда на участке, подвергшемся воздействию высокой температуры, произойдет кардинальное изменение свойств стали;
  • при контакте с обычной сталью. В этом случае для появления коррозии достаточно контакта с истертым или ржавым участком обычной стали.

При проведении брожения и созревания в ЦКТ менее чем за три недели необходимо обращать особое внимание на некоторые технологические параметры, тем более, что визуально оценить как идет брожение невозможно.

Особое значение имеет азотистый состав сусла, который зависит от режима затирания: Главное: сусло должно содержать по меньшей мере 23 мг свободного α-аминного азота/100 мл сусла, необходимого для нормального питания дрожжей. Количество свободного α-аминного азота не должно быть ниже 20 мг/100 мл. При использовании несоложеного сырья содержание свободного α-аминного азота должно составлять минимум 15 мг/100 мл.

Аэрация сусла и норма внесения дрожжей - это решающие факторы для быстрого и интенсивного забраживания. Норма внесения дрожжей в 30 млн. клеток/мл соответствует добавлению 1 л густых дрожжей на 1 гл сусла.

Дрожжи очень чувствительны к внезапному изменению температуры. Резкое охлаждение приводит к шоку, что отрицательное влияет на брожение и размножение дрожжей. При внесении дрожжей и в логарифмической фазе роста следует избегать сильного охлаждения. Доливаемое сусло должно иметь температуру, равную бродящему пиву.

Индикатор созревания пива - расщепление диацетила. Можно исходить из того, что одновременно со значительным расщеплением диацетила исчезают и другие букетообразователи молодого пива. Общее содержание диацетила в конце фазы созревания должно быть ниже 0,10 мг/л. Незначительное расщепление диацетила происходит и при дображивании. Пиво должно иметь уровень диацетила ниже 0,10 мг/л.

Осевшие дрожжи необходимо удалять из танка, как только это позволит их консистенция. Автолиз дрожжей ухудшает качество пива.

После созревания все пиво должно охлаждаться до температуры -1 -2°С и выдерживаться при этой температуре не менее 7 дней. Более короткие сроки и более высокие температуры в данной стадии требуют увеличения затрат для достижения коллоидной стойкости. Быстрое глубокое кратковременное охлаждение не приводит к нужному результату!

Брожение и созревание можно проводить в одном ЦКТ (однотанковый способ) или использовать ЦКТБ для брожения и ЦКТЛ для холодной выдержки (двухтанковый способ).

Аналогично можно проводить брожение в ЦКТБ, а созревание и дображивание - в обычных лагерных танках.

При использовании двух цилиндроконических танков созревание (расщепление диацетила) следует проводить в ЦКТБ, чтобы получить однородное по качеству пиво. В лагерном ЦКТ следует проводить только выдержку при низких температурах (для достижения коллоидной стойкости, осветления и округления вкуса пива).

Использование одного танка дает серьезные преимущества, а именно:


· уменьшаются затраты на мойку, так как мойке подвергается только одна емкость;

· уменьшаются потери СО 2 , так как пиво не перемещают в пустой танк;

· уменьшаются потери пива, так как нет потерь при перекачивании и потерь на смачивание;

· сокращается рабочее время, так как пиво не надо перекачивать в другой танк;

· экономится энергия, так как пиво не перекачивается;

· не возникает опасности попадания кислорода.

Недостатком является менее эффективное использование объема танка в стадии дображивания. По качеству пива заметного различия между двумя данными вариантами нет. Считается, что любой режим брожения можно проводить с применением как одного, так и двух ЦКТ.

Рекуперация СО 2 при брожении по экономическим и экологическим соображениям настоятельно рекомендуется. Карбонизация необходима только в случае теплого созревания и низкого избыточного давления. Охлаждение должно быть на каждом танке.

Режимы брожения и созревания, применяемые для пива низового брожения, можно разделить на три группы:

· холодное брожение - холодное созревание;

· холодное брожение - теплое созревание;

· теплое брожение - холодное созревание.

На рисунках 4.48-4.53 по Миеданеру (Miedaner) обозначены:

· черной линией - изменение температуры;

· красной линия - концентрация диацетила;

· красной штриховой линией - экстрактивносгь;

· красной штрих-пунктирной линией - изменение давления;

· обозначение S в стрелке означает момент перекачки в лагерный танк;

· маленькая стрелка или буква и обозначает момент снятия дрожжей).

При циклическом приготовлении пива с помощью цилиндро-конических танков, для сохранения принципов поточности и ритмичности, а также для обеспечения в случае нужды максимальной производительности пивоварни исходя из мощности варочного цеха, очень важно обеспечить своевременное снятие и регенрацию семенных дрожжей при окончании главного брожения, для чего существует несколько способов.

Наиболее целесообразным способом проведения главного брожения в цилиндро-конических танках является следующий способ.

Способ проведения главного брожения

В день варки в промытый и простерилизованный цилиндро-конический танк про продезинфицированному трубопроводу(шлангу) подаётся охлаждённое сусло. При этом температура подаваемого сусла зависит от текущей рецептуры пива и его технологической карты, как правило от 8 до 25 град. В зависимости от технологических условий пивоварни, подаваемое сусло может быть дополнительно аэрировано стерильным обеспложенным воздухом.

Подав сусло, отключив магистраль и промыв и закрыв входное отверстие цилиндро-конического танка, вносятся семенные дрожжи. Обычно цилиндро-конический танк на мини пивоварнях имеет объём кратный двум варкам сусла, поэтому целесообразно вносить семенные дрожжи в первую варку.Перед внесением дрожжей необходимо удостовериться, что температура сусла имеет установленное значение. Если она отличается в верхнюю сторону, то необходимо, включив охлаждение, дождаться пока сусло охладиться до установленных значений. Если же температура сусла ниже установленных рецептурой значений, то значениями 2-3-4 град. ниже установленного значения можно пренебречь, а если ниже свыше 5 град. то необходимо дождаться второй варки и выровнять температуру до рецептурной и только потом вносить дрожжи.

На второй день после варки, необходимо аккуратно слить осадок из конуса, начало брожения можно определить(при наличии конструктивных особенностей) заглянув сверху на поверхность молодого пива, при наличии белой пены брожение началось. Далее ежедневно ведётся контроль плотности бродящего сусла и при достижении плотности около 5 %(зависит от рецептуры пива), свободный выход для углекислого газа перекрывается и танк шпунтуется, при этом оптимальным является установка давления на сброс избыточного газа около 1.5 атм. Далее продолжается вестись ежедневный контроль брожения. При достижении плотности около 3%- 3,5% в цилиндро-коническом танке включается охлаждение. Семенные дрожжи готовы для снятия, как правило через два дня.

Для снятия семенных дрожжей(при небольших объёмах цилиндро-конических танков до 2 - 4 тонн), желательно применять безрантовую кастрюлю с крышкой полностью из нержавеющей стали. Перед снятием дрожжей, кастрюля и поварёшка для перемешивания моются, споласкивается водой, а затем стерилизуется с помощью спиртсодержащих дезинфекторов способных гореть, например LERASEPT FI . Для чего кастрюля приоткрывается, затем с помощью пульверизатора она обрызгивается дезинфектором, он поджигается, и продолжая обрызгивать горящую кастрюлю струей дезинфектора, добиваемся стабильного горения спирта по всей поверхности кастрюли, крышки и поварёшки. После этого, кастрюля накрывается крышкой и идет остывание до комнатной температуры. В это время к цилиндро-коническому танку, откуда будет производиться съём дрожжей, присоединяется тщательно промытый и продезинфицированный короткий шланг. Подслив первые пару литров дрожжей в канализацию, аккуратно приоткрывая кран, начинаем медленно наполнять кастрюлю семенными дрожжами. В случае если дрожжи сильно вспениваються в кастрюле, допускается добавить к ним пару капель пищевого пеногасителя. Наполнять кастрюлю дрожжами надо не спеша, давая дрожжам возможность плавно спускаться по конусу.

После снятия дрожжей, входное отверстие в танке промывается и закрывается крышкой. Семенные дрожжи в кастрюле, перед задачей, желательно поставить в помещение лагерного цеха, чтобы они немного нагрелись в кастрюле. Перед задачей дрожжей люк и поверхность вокруг у танка куда они будут вноситься обрабатываются спиртсодержащим дезинфектором и насухо вытираються салфетками. Дрожжи в кастрюле перед задачей перемешиваються поварёшкой, бока кастрюли также обрабатываються дезинфектром и вытираються насухо. Затем, открыв люк танка, дрожжи аккуратно заливаються в сусло, при этом надо следить чтобы возможные капли со дна на котором стоит кастрюля не попали в танк! После чего люк закрывается и кастрюля моется. В паспорте пива указывается генерация дрожжей + 1.

В случае конструктивных особенностей цилиндро-конических танков, не имеющих верхних люков для задачи, применяется способ подачи дрожжей через простерелизованный шланг, для чего к танку откуда будут браться дрожжи присоединяется промытый простерилизованный шланг, на конце к нему прикручивается смотровое стекло, и кран с адаптором для присоединения к танку. После чего открывается кран в танке с дрожжами, из шланга вытесняется остатки воздуха и подлсив первые пару литров дрожжей в канализацию, шланг прикручивается к простерилизованному танку куда будут подаваться дрожжи, после чего приоткрыв на 20%- 30 % процентов кран на конце шланга, через стекло контролируем прохождения всех дрожжей танк, а как начинает идти пиво кран перекрывается, и шланг отсоединяется.после чего он отсоединяется также от танка откуда подавались дрожжи и промывается. Поскольку при подаче первого сусла в цилиндро-конический танк дрожжи уже находяться в нём, нужно особенно тщательно контролировать температурный режим подаваемого сусла,а самое первое сусло10-20% допускается намеренно подать более холодным. В паспорте пива также указывается генерация дрожжей + 1.


Автор статьи: Георгий Сергеевич Иванов
Лечебные рецепты с медом
Для любых предложений по сайту: [email protected]