Раствор 1 20 как. Приготовление молекулярного раствора. Янтарная плп щавелевая кислота

Единицы СИ в клинической лабораторной диагностике.

В клинической лабораторной диагностике Международную систему единиц рекомендуется применять в соответствии со следующими правилами.

1. В качестве единиц объема следует применять литр. Не рекомендуется в знаменателе применять дольные или кратные от литра (1-100 мл).

2. Концентрация измеряемых веществ указывается как молярная (моль/л) или как массовая (г/л).

3. Молярная концентрация используется для веществ с известной относительной молекулярной массой. Ионная концентрация указывается в виде молярной.

4. Массовую концентрацию используют для веществ, относительная молекулярная масса которых неизвестна.

5. Плотность указывается в г/л; клиренс – в мл/с.

6. Активность ферментов на количество веществ по времени и объему выражается как моль/(с*л); мкмоль/(с*л); нмоль/(с*л).

При переводе единиц массы в единицы количества вещества (молярные) коэффициент пересчета - К=1/Mr, где Mr – относительная молекулярная масса. При этом исходная единица массы (грамм) соответствует молярной единице количества вещества (моль).

Общая характеристика.

Растворы – однородные системы, состоящие из двух или более компонентов и продуктов их взаимодействия. Роль растворителя может выполнять не только вода, но и этиловый спирт, эфир, хлороформ, бензол и т.д.

Процесс растворения часто сопровождается выделением тепла (экзотермическая реакция – растворение едких щелочей в воде) или поглощением тепла (эндотермическая реакция – растворение аммонийных солей).

К жидким растворам относятся растворы твердых веществ в жидкостях (раствор соли в воде), растворы жидкостей в жидкостях (раствор этилового спирта в воде), растворы газов в жидкостях (СО 2 в воде).

Растворы могу быть не только жидкие, но и твердые (стекло, сплав серебра и золота), а также газообразные (воздух). Наиболее важными и распространенными являются водные растворы.

Растворимость – свойство вещества растворяться в растворителе. По растворимости в воде все вещества делят на 3 группы - хорошо растворимые, малорастворимые и практически не растворимые. Растворимость, прежде всего, зависит от природы веществ. Растворимость выражают количеством граммов вещества, которое можно максимально растворить в 100 г растворителя или раствора при данной температуре. Это количество называется коэффициентом растворимости или просто растворимостью вещества.

Раствор, в котором при данной температуре и объеме не происходит дальнейшее растворение вещества, называется насыщенным. Такой раствор находится в равновесии с избытком растворяемого вещества, он содержит максимально возможное при данных условиях количество вещества. Если концентрация раствора не достигает концентрации насыщения при данных условиях, то раствор называется ненасыщенным. В пересыщенном растворе вещества содержится больше, чем в насыщенном растворе. Пересыщенные растворы очень неустойчивы. Простое сотрясение сосуда или соприкосновение с кристаллами растворенного вещества приводит к мгновенной кристаллизации. При этом пересыщенный раствор переходит в насыщенный раствор.



Понятие «насыщенные растворы» следует отличать от понятия «пересыщенные растворы». Концентрированным называется раствор с высоким содержание растворенного вещества. Насыщенные растворы разных веществ могут сильно различаться по концентрации. У хорошо растворимых веществ (нитрит калия) насыщенные растворы имеют высокую концентрацию; у малорастворимых веществ (сульфат бария) насыщенные растворы обладают небольшой концентрацией растворенного вещества.

В подавляющем большинстве случаев с повышением температуры растворимость вещества увеличивается. Но есть вещества, растворимость которых с повышением температуры увеличивается незначительно (хлорид натрия, хлорид алюминия) или даже уменьшается.

Зависимость растворимости различных веществ от температуры изображается графически с помощью кривых растворимости. На оси абсцисс откладывают температуру, на оси ординат – растворимость. Таким образом, можно рассчитать, сколько соли выпадает из раствора при его охлаждении. Выделение веществ из раствора при понижении температуры называется кристаллизацией, при этом вещество выделяется в чистом виде.

Если в растворе содержатся примеси, то раствор по отношению к ним будет ненасыщенным даже при понижении температуры, и примеси в осадок не выпадут. На этом основан метод очистки веществ – кристаллизация.

В водных растворах образуются более или менее прочные соединения частиц растворенного вещества с водой – гидраты. Иногда такая вода настолько прочно связана с растворенным веществом, что при его выделении входит в состав кристаллов.

Кристаллические вещества, содержащие в своем составе воду, называются кристаллогидратами, а сама вода – кристаллизационной. Состав кристаллогидратов выражается формулой с указанием числа молекул воды на одну молекулу вещества – CuSO 4 * 5H 2 O.

Концентрация – отношение количества растворенного вещества к количеству раствора или растворителя. Концентрацию раствора выражают в весовых и объемных отношениях. Весовые процентные отношения указывают на весовое содержание вещества в 100 г раствора (но не в 100 мл раствора!).

Техника приготовления приблизительных растворов.

Отвешивают необходимые вещества и растворитель в таких отношениях, чтобы общая сумма была 100 г. Если растворителем является вода, плотность которой равна единице, ее не взвешивают, а отмеряют объем, равный массе. Если растворителем является жидкость, плотность которой не равна единице, ее или взвешивают, или выраженное в граммах количество растворителя делят на показатель плотности и рассчитывают объем, который занимает жидкость. Плотность P – отношение массы тела к его объему.

За единицу плотности принята плотность воды при 4 0 С.

Относительной плотностью D называют отношение плотности данного вещества к плотности другого вещества. Практически определяют отношение плотности данного вещества к плотности воды, принятой за единицу. Например, если относительная плотность раствора равна 2,05, то 1 мл его весит 2,05 г.

Пример. Сколько надо взять 4-х хлористого углерода для приготовления 100 г 10% раствора жира? Отвешивают 10 г жира и 90 г растворителя CCl 4 или, измеряя объем занимаемой необходимым количеством CCl 4 , делят массу (90 г) на показатель относительной плотности D = (1, 59 г/мл).

V = (90 г) / (1, 59 г/мл) = 56, 6 мл.

Пример. Как приготовить 5% раствор сернокислой меди из кристаллогидрата этого вещества (в расчете на безводную соль)? Молекулярная масса сернокислой меди – 160 г, кристаллогидрата – 250 г.

250 – 160 X = (5*250) / 160 = 7,8 г

Следовательно, нужно взять 7,8 г кристаллогидрата, 92,2 г воды. Если раствор готовят без пересчета на безводную соль, расчет упрощается. Отвешивают заданное количество соли и прибавляют растворитель в таком количестве, чтобы общий вес раствора был 100 г.

Объемные процентные отношения показывают, какое количество вещества (в мл) содержится в 100 мл раствора или смеси газов. Например, 96% раствор этилового спирта содержит 96 мл абсолютного (безводного) спирта и 4 мл воды. Объемными процентами пользуются при смешивании взаиморастворяющихся жидкостей, при приготовлении газовых смесей.

Весо-объемные процентные отношения (условный способ выражения концентрации). Указывают весовое количество вещества, содержащегося в 100 мл раствора. Например, 10% раствора NaCl содержит 10 г соли в 100 мл раствора.

Техника приготовления процентных растворов из концентрированных кислот.

Концентрированные кислоты (серная, соляная, азотная) содержат воду. Соотношение кислоты и воды в них указывается в весовых процентных отношениях.

Плотность растворов в большинстве случаев выше единицы. Процентное содержание кислот определяется по их плотности. При приготовлении более разбавленных растворов из концентрированных растворов учитывают содержание в них воды.

Пример. Надо приготовить 20% раствор серной кислоты H 2 SO 4 из концентрированной 98% серной кислоты с плотность D = 1,84 г/мл. Первоначально рассчитываем, в каком количестве концентрированного раствора содержится 20 г серной кислоты.

100 – 98 X = (20*100) / 98 = 20,4 г

Практически удобнее работать с объемными, а не с весовыми, единицами кислот. Поэтому рассчитывают, какой объем концентрированной кислоты занимает нужное весовое количество вещества. Для этого полученное в граммах число делят на показатель плотности.

V = M/P = 20, 4 / 1, 84 = 11 мл

Можно рассчитывать и другим способом, когда концентрация исходного раствора кислоты сразу же выражается в весо-объемных процентных отношениях.

100 – 180 X = 11 мл

Когда не требуется особенной точности, при разбавлении растворов или смешивании их для получения растворов другой концентрации можно пользоваться следующим простым и быстрым способом. Например, нужно приготовить 5% раствор сернокислого аммония из 20% раствора.

Где 20 – концентрация взятого раствора, 0 – вода, и 5 – требуемая концентрация. Из 20 вычитаем 5, и полученное значение пишем в правом нижнем углу, вычитая 0 из 5, пишем цифру в правом верхнем углу. Тогда схема примет следующий вид.

Это значит, что нужно взять 5 частей 20% раствора и 15 частей воды. Если смешать 2 раствора, то схема сохраняется, только в левом нижнем углу пишется исходный раствор с меньшей концентрацией. Например, смешиванием 30% и 15% растворов нужно получить 25% раствор.

Таким образом, нужно взять 10 частей 30% раствора и 15 частей 15% раствора. Такой схемой можно пользоваться, когда не требуется особой точности.

К точным растворам относят нормальные, молярные, стандартные растворы.

Нормальным называют раствор, в 1 г которого содержится г – экв растворенного вещества. Весовое количество сложного вещества, выраженное в граммах и численно равное его эквиваленту, называется грамм – эквивалентом. При вычислении эквивалентов соединений типа оснований, кислот и солей можно пользоваться следующими правилами.

1. Эквивалент основания (Э о) равен молекулярной массе основания, деленной на число групп ОН в его молекуле (или на валентность металла).

Э (NaOH) = 40/1=40

2. Эквивалент кислоты (Э к) равен молекулярной массе кислоты, деленной на число атомов водорода в ее молекуле, которые могут замещаться на металл.

Э(H 2 SO 4) = 98/2 = 49

Э(HCl) = 36,5/1=36,5

3. Эквивалент соли (Э с) равен молекулярной массе соли, деленной на произведение валентности металла, на число его атомов.

Э(NaCl) = 58,5/(1*1) = 58,5

При взаимодействии кислот и оснований в зависимости от свойств реагирующих веществ и условий реакции не обязательно все атомы водорода, присутствующие в молекуле кислоты, замещаются на атом металла, а образуются кислые соли. В этих случаях грамм – эквивалент определяется числом атомов водорода, замещенных на атомы металлов в данной реакции.

H 3 PO 4 + NaOH = NaH 2 PO + H 2 O (грамм – эквивалент равен грамм – молекулярному весу).

H 3 PO 4 + 2NaOH = Na 2 HPO 4 + 2H 2 O (грамм – эквивалент равен половине грамм - молекулярного веса).

При определении грамм – эквивалента требуется знание химической реакции и условий, в которых она протекает. Если нужно приготовить децинормальный, сантинормальный или миллинормальный растворы, берут, соответственно, 0,1; 0,01; 0,001 грамм – эквивалент вещества. Зная нормальность раствора N и эквивалент растворенного вещества Э, легко вычислить, сколько граммов вещества содержится в 1мл раствора. Для этого надо массу растворенного вещества разделить на 1000. Количество растворенного вещества в граммах, содержащееся в 1 мл раствора, называется титром раствора (Т).

Т = (N*Э) / 1000

Т (0,1 H 2 SO 4) = (0,1*49) / 1000 = 0,0049 г/мл.

Раствор с известным титром (концентрацией) называется титрованным. Пользуясь титрованным раствором щелочи, можно определить концентрацию (нормальность) раствора кислоты (ацидиметрия). Пользуясь титрованным раствором кислоты, можно определить концентрацию (нормальность) раствора щелочи (алкалиметрия). Растворы одинаковой нормальности реагируют в равных объемах. При разных нормальностях эти растворы реагируют между собой в объемах, обратно пропорциональных их нормальностям.

N к / N щ = V щ / V к

N к * V к = N щ * V щ

Пример. На титрование 10 мл раствора HCl пошло 15 мл 0,5 N раствора NaOH. Вычислить нормальность раствора HCl.

N к * 10 = 0, 5 * 15

N к = (0, 5 * 15) / 10 = 0, 75

N = 30 / 58, 5 = 0, 5

Фиксаналы – заранее приготовленные и запаянные в ампулы, точно отвешенные количества реактива, необходимые для приготовления 1 л 0, 1 N или 0, 01 N раствора. Фиксаналы бывают жидкие и сухие. Сухие имеют более длительный срок хранения. Техника приготовления растворов из фиксаналов описана в приложении к коробке с фиксаналами.

Приготовление и проверка децинормальных растворов.

Децинормальные растворы, которые в лаборатории часто являются исходными, готовят из химически частых препаратов. Необходимая навеска отвешивается на технохимических весах или аптекарских весах. При взвешивании допускается ошибка на 0,01 – 0,03 г. Практически можно допустить ошибку в сторону некоторого повышения полученного по расчету веса. Навеска переносится в мерную колбу, куда добавляется небольшое количество воды. После полного растворения вещества и уравнивания температуры раствора с температурой воздуха колба доливается водой до отметки.

Приготовленный раствор требует проверки. Проверка производится с помощью растворов, приготовленных их фиксаналов, в присутствии индикаторов, устанавливается коэффициент поправки (К) и титр. Коэффициент поправки (К) или фактор поправки (F) показывает, какому количеству (в мл) точного нормального раствора соответствует 1мл данного (приготовленного) раствора. Для этого 5 или 10 мл приготовленного раствора переносят в коническую колбу, добавляют несколько капель индикатора и титруют точным раствором. Титрование проводят дважды и рассчитывают среднюю арифметическую величину. Результаты титрования должны быть примерно одинаковыми (разница в пределах 0,2 мл). Коэффициент поправки рассчитывают по отношению объема точного раствора V т к объему испытуемого раствора V н.

К = V т / V н.

Коэффициент поправки может быть определен и вторым способом – по отношению титра испытуемого раствора к теоретически высчитанному титру точного раствора.

K = T практ. / T теор.

Если левые части уравнения равны, то равны и их правые части.

V т / V н. = T практ. / T теор.

Если найден практический титр испытуемого раствора, значит, определено весовое содержание вещества в 1 мл раствора. При взаимодействии точного и проверяемого раствора могут иметь место 3 случая.

1. Растворы взаимодействовали в одинаковых объемах. Например, на титрование 10 мл 0,1 н раствора пошло 10 мл испытуемого раствора. Следовательно, нормальность одинакова, и коэффициент поправки равен единице.

2. На взаимодействие с 10 мл точного раствора пошло 9,5 мл испытуемого, испытуемый раствор оказался концентрированнее точного раствора.

3. На взаимодействие с 10 мл точного раствора пошло 10,5 мл испытуемого, испытуемый раствор слабее по концентрации, чем точный раствор.

Коэффициент поправки рассчитывается с точностью до второго знака после запятой, допускаются колебания от 0,95 до 1,05.

Исправление растворов, коэффициент поправки которых больше единицы.

Коэффициент поправки показывает, во сколько раз данный раствор концентрированнее раствора определенной нормальности. Например, К равен 1,06. Следовательно, к каждому мл приготовленного раствора надо прибавить 0,06 мл воды. Если осталось 200 мл раствора, то (0,06*200) = 12 мл – прибавляют к оставшемуся приготовленному раствору и смешивают. Этот способ приведения растворов к определенной нормальности прост и удобен. Приготавливая растворы, следует готовить их более концентрированными растворами, а не разбавленными растворами.

Приготовление точных растворов, коэффициент поправки которых меньше единицы.

В указанных растворах недостает какой-то части грамм – эквивалента. Эту недостающую часть можно определить. Если рассчитать разность между титром раствора определенной нормальности (теоретический титр) и титром данного раствора. Полученная величина показывает, сколько вещества надо прибавить к 1 мл раствора для доведения его до концентрации раствора заданной нормальности.

Пример. Коэффициент поправки приблизительно 0,1 N раствора едкого натра равен 0,9, объем раствора – 1000 мл. Привести раствор к точно 0,1 N концентрации. Грамм - эквивалент едкого натра – 40 г. Теоретический титр для 0,1 N раствора – 0,004. Практический титр - Т теор. * K = 0,004 * 0, 9 = 0, 0036 г.

T теор. - T практ. = 0, 004 – 0, 0036 = 0, 0004 г.

Осталось неизрасходованным 1000 мл раствора – 1000 * 0, 0004 = 0,4 г.

Полученное количество вещества прибавляют к раствору, хорошо перемешивают, и еще раз определяют титр раствора. Если исходным материалом для приготовления растворов являются концентрированные кислоты, щелочи, и другие вещества, то необходимо производить дополнительный расчет, чтобы определить, в каком количестве концентрированного раствора содержится рассчитанная величина данного вещества. Пример. На титрование 5 мл приблизительно 0,1 N раствора HCl пошло 4,3 мл точного 0,1 N раствора NaOH.

K = 4,3/5 = 0,86

Раствор слабый, его надо укрепить. Рассчитываем Т теор. , T практ. и их разность.

Т теор. = 3,65 / 1000 = 0,00365

T практ. = 0, 00365 * 0, 86 = 0, 00314

Т теор. - T практ. = 0, 00364 – 0, 00314 = 0, 00051

Осталось неиспользованным 200 мл раствора.

200 * 0, 00051 = 0, 102 г

Для 38% раствора HCl плотностью 1, 19 составляем пропорцию.

100 – 38 X = (0, 102 * 100) / 38 = 0, 26 г

Переводим весовые единицы в объемные, учитывая плотность кислоты.

V = 0, 26 / 1, 19 = 0, 21 мл

Приготовление 0,01 N, 0,005 N из децинормальных растворов, имеющий коэффициент поправки.

Первоначально рассчитывают, какой объем 0,1 N раствора надо взять для приготовления из 0,01 N раствора. Рассчитанный объем делят на коэффициент поправки. Пример. Надо приготовить 100 мл 0, 01 N раствора из 0,1 N с К = 1,05. Так как раствор концентрированнее в 1,05 раза, надо взять 10/1,05 = 9, 52 мл. Если К = 0, 9, то надо взять 10/0,9 = 11,11 мл. В данном случае берут несколько большее количество раствора и доводят объем в мерной колбе до 100 мл.

Для приготовления и хранения титрованных растворов существуют следующие правила.

1. Каждый титрованный раствор имеет свой предельный срок хранения. При хранении они изменяют свой титр. При выполнении анализа необходимо проверить титр раствора.

2. Необходимо знать свойства растворов. Титр некоторых растворов (гипосульфит натрия) меняются со временем, поэтому их титр устанавливается не ранее чем через 5-7 дней после приготовления.

3. Все бутылки с титрованными растворами должны иметь четкую надпись с указанием вещества, его концентрации, коэффициента поправки, временем изготовления раствора, даты проверки титра.

4. При аналитических работах большое внимание нужно уделять расчетам.

Т = А / V (А – навеска)

N = (1000 * А) / (V * г /экв)

T = (N * г/экв) / 1000

N = (T * 1000) / (г/экв)

Молярным называют раствор, в 1л которого содержится 1 г*моль растворенного вещества. Моль – молекулярная масса, выраженная в граммах. 1-молярный раствор серной кислоты – 1 л такого раствора содержит 98 г серной кислоты. Сантимолярный раствор содержит в 1 л 0, 01 моль, миллимолярный – 0, 001 моль. Раствор, концентрация которого выражена количеством молей на 1000 г растворителя, называется моляльным.

Например, в 1 л 1 М раствора едкого натра содержится 40 г препарата. В 100 мл раствора будет содержаться 4, 0 г, т.е. раствор 4/100 мл (4г%).

Если раствор едкого натра 60/100 (60мг%), нужно определить его молярность. В 100 мл раствора содержится 60 г едкого натра, а в 1 л – 600 г., т.е. в 1 л 1 М раствора должно содержаться 40 г едкого натра. Молярность натра - X = 600 / 40 = 15 М.

Стандартным называются растворы с точно известными концентрациями, применяющимися для количественного определения веществ методом колориметрии, нефелометрии. Навеску для стандартных растворов отвешивают на аналитических весах. Вещество, из которого готовят стандартный раствор, должно быть химически чистым. Стандартные растворы. Стандартные растворы готовят в объеме, необходимом для расхода, но не больше 1 л. Количество вещества (в граммах), необходимое для получения стандартных растворов – А.

А = (M I * T * V) / М 2

M I – Молекулярная масса растворяемого вещества.

Т – Титр раствора по определяемому веществу (г/мл).

V – Заданный объем (мл).

М 2 – Молекулярная или атомная масса определяемого вещества.

Пример. Нужно приготовить 100 мл стандартного раствора CuSO 4 * 5H 2 O для колориметрического определения меди, причем в 1 мл раствора должно содержаться 1 мг меди. В данном случае M I = 249, 68; M 2 = 63, 54; T = 0, 001 г/мл; V = 100 мл.

А = (249,68*0,001*100) / 63,54 = 0,3929 г.

Навеску соли переносят в мерную колбу емкостью 100 мл и добавляют воду до отметки.

Контрольные вопросы и задачи.

1. Что такое раствор?

2. Какие существуют способы выражения концентрации растворов?

3. Что такое титр раствора?

4. Что такое грамм – эквивалент и как его рассчитывают для кислот, солей, оснований?

5. Как приготовить 0,1 N раствор едкого натрия NaOH?

6. Как приготовить 0,1 N раствор серной кислоты H 2 SO 4 из концентрированной с плотностью 1,84?

8. Какой существует способ для укрепления и разбавления растворов?

9. Вычислить, сколько граммов NaOH необходимо для приготовления 500 мл 0,1 М раствора? Ответ – 2 г.

10. Сколько граммов CuSO 4 * 5H 2 O нужно взять для приготовления 2 л 0,1 N раствора? Ответ – 25 г.

11. На титрование 10 мл раствора HCl пошло 15 мл 0,5 N раствора NaOH. Вычислить – нормальность HCl, концентрацию раствора в г/л, титр раствора в г/мл. Ответ – 0,75; 27,375 г/л; Т = 0,0274 г/мл.

12. В 200 г воды растворено 18 г вещества. Вычислить весовую процентную концентрацию раствора. Ответ – 8,25%.

13. Сколько мл 96% раствора серной кислоты (D = 1.84) нужно взять для приготовления 500 мл 0,05 N раствора? Ответ – 0,69 мл.

14. Титр раствора H 2 SO 4 = 0,0049 г/мл. Вычислить нормальность этого раствора. Ответ – 0,1 N.

15. Сколько граммов едкого натра нужно взять для приготовления 300 мл 0,2 N раствора? Ответ – 2,4 г.

16. Сколько нужно взять 96% раствора H 2 SO 4 (D = 1,84) для приготовления 2 л 15% раствора? Ответ – 168 мл.

17. Сколько мл 96% раствора серной кислоты (D = 1,84) нужно взять для приготовления 500 мл 0,35 N раствора? Ответ – 9,3 мл.

18. Сколько мл 96% серной кислоты (D = 1,84) нужно взять для приготовления 1 л 0,5 N раствора? Ответ – 13,84 мл.

19. Сколько молярность 20% раствора соляной кислоты (D = 1,1). Ответ – 6,03 М.

20 . Вычислить молярную концентрацию 10% раствора азотной кислоты (D = 1,056). Ответ – 1,68 М.

Приготовление растворов. Раствором называют однородные смеси двух или более веществ. Концентрацию раствора выражают по-разному:

в весовых процентах, т.е. по количеству граммов вещества, содержащегося в 100 г раствора;

в объемных процентах, т.е. по количеству единиц объема (мл) вещества в 100 мл раствора;

молярностью, т.е. количеством грамм-молей вещества, находящегося в 1 л раствора (молярные растворы);

нормальностью, т.е. количеством грамм-эквивалентов раствореного вещества в 1 л раствора.

Растворы процентной концентрации. Процентные растворы готовят как приблизительные, при этом навеску вещества отвешивают на технохимических весах, а объемы отмеривают измерительными цилиндрами.

Для приготовления процентных растворов пользуются несколькими приемами.

Пример. Необходимо приготовить 1 кг 15%-ного раствора хлористого натрия. Сколько необходимо для этого взять соли? Расчет проводится согласно пропорции:

Следовательно воды для этого необходимо взять 1000-150 = 850 г.

В тех случаях, когда надо приготовить 1 л 15%-ного раствора хлористого натрия, необходимое количество соли рассчитывают другим способом. По справочнику находят плотность этого раствора и, умножив ее на заданный объем, получают массу необходимого количества раствора: 1000-1,184 = 1184 г.

Тогда следует:

Следовательно, необходимое количество хлористого натрия различно для приготовления 1 кг и 1 л раствора. В тех случаях, когда приготовляют растворы из реактивов, содержащих в составе кристаллизационную воду, следует ее учитывать при расчете необходимого количества реактива.

Пример. Необходимо приготовить 1000 мл 5%-ного раствора Na2CO3 плотностью 1,050 из соли, содержащей кристаллизационную воду (Na2CO3-10H2O)

Молекулярная масса (вес) Na2CO3 равна 106 г, молекулярная масса (вес) Na2CO3-10H2O равна 286 г, отсюда рассчитывают необходимое количество Na2CO3-10H2O для приготовления 5%-ного раствора:

Методом разбавления растворы приготовляют следующим образом.

Пример. Необходимо приготовить 1 л 10%-ного раствора HCl из раствора кислоты относительной плотностью 1,185 (37,3%). Относительная плотность 10%-ного раствора 1,047 (по справочной таблице), следовательно, масса (вес) 1 л такого раствора равна 1000X1,047 = 1047 г. В этом количестве раствора должно содержаться чистого хлористого водорода

Чтобы определить, сколько необходимо взять 37,3%-ной кислоты, составляем пропорцию:

При приготовлении растворов путем разбавления или смешивания двух растворов для упрощения расчетов применяют способ диагональной схемы или «правило креста». На пересечении двух линий пишется заданная концентрация, а у обоих концов слева - концентрация исходных растворов, для растворителя она равна нулю.

При приготовлении растворов процентной концентрации вещество отвешивают на техно-химических весах, а жид- I кости отмеривают мерным цилиндром. Поэтому навеску! вещества рассчитывают с точностью до 0,1 г, а объем 1 жидкости с точностью до 1 мл.

Прежде чем приступить к приготовлению раствора, | необходимо произвести расчет, т. е. рассчитать количество растворяемого вещества и растворителя для приготовления определенного количества раствора заданной концентрации.

РАСЧЕТЫ ПРИ ПРИГОТОВЛЕНИИ РАСТВОРОВ СОЛЕЙ

Пример 1. Надо приготовить 500 г 5% раствора нитЯ рата калия. 100 г такого раствора содержат 5 г KN0 3 ;1 Составляем пропорцию:

100 г раствора-5 г KN0 3

500 » 1 - х » KN0 3

5-500 „_ х= -jQg- = 25 г.

Воды нужно взять 500-25 = 475 мл.

Пример 2. Надо приготовить 500 г 5% раствора СаСЬ из соли СаС1 2 -6Н 2 0. Вначале производим расчет для безводной соли.

100 г раствора-5 г СаС1 2 500 » » -х » СаС1 2 5-500 _ х= 100 = 25 г —

Мольная масса СаС1 2 = 111, мольная масса СаС1 2 - 6Н 2 0 = 219*. Следовательно, 219 г СаС1 2 -6Н 2 0 содер­жат 111 г СаС1 2 . Составляем пропорцию:

219 г СаС1 2 -6Н 2 0-111 г СаС1 2

х » СаС1 2 -6Н 2 0- 26 » CaCI,

219-25 х = -jjj- = 49,3 г.

Количество воды равно 500-49,3=450,7 г, или 450,7 мл. Так как воду отмеривают мерным цилиндром, то десятые доли миллилитра в расчет не принимают. Следовательно, нужно отмерить 451 мл воды.

РАСЧЕТЫ ПРИ ПРИГОТОВЛЕНИИ РАСТВОРОВ КИСЛОТ

При приготовлении растворов кислот необходимо учиты­вать, что концентрированные растворы кислот не явля­ются 100% и содержат воду. Кроме того, нужное ко­личество кислоты не отвешивают, а отмеривают мерным цилиндром.

Пример 1. Нужно приготовить 500 г 10% раствора соляной кислоты, исходя из имеющейся 58% кислоты, плотность которой d=l,19.

1. Находим количество чистого хлористого водорода, которое должно быть в приготовленном растворе кис­лоты:

100 г раствора -10 г НС1 500 » » - х » НС1 500-10 * = 100 = 50 г —

* Для расчета растворов процентной концентрации мольную, массу округляют до целых чисел.

2. Находим количество граммов концентрированной }
кислоты, в котором будет находиться 50 г НС1:

100 г кислоты-38 г НС1 х » » -50 » НС1 100 50

X gg— » = 131 ,6 Г.

3. Находим объем, который занимает это количество 1
кислоты:

V — - — 131 ‘ 6 110 6 щ

4. Количество растворителя (воды) равно 500-;
-131,6 = 368,4 г, или 368,4 мл. Так как необходимое ко-
личество воды и кислоты отмеривают мерным цилинд-
ром, то десятые доли миллилитра в расчет не принима-
ют. Следовательно, для приготовления 500 г 10% раство-
ра соляной кислоты необходимо взять 111 мл соляной I
кислоты и 368 мл воды.

Пример 2. Обычно при расчетах для приготовления кислот пользуются стандартными таблицами, в которых указаны процент раствора кислоты, плотность данного раствора при определенной температуре и количество граммов этой кислоты, содержащееся в 1 л раствора данной концентрации (см. приложение V). В этом слу­чае расчет упрощается. Количество приготовляемого раствора кислоты может быть рассчитано на определен­ный объем.

Например, нужно приготовить 500 мл 10% раствора соляной кислоты, исходя из концентрированного 38% j раствора. По таблицам находим, что 10% раствор соля­ной кислоты содержит 104,7 г НС1 в 1 л раствора. Нам I нужно приготовить 500 мл, следовательно, в растворе должно быть 104,7:2 = 52,35 г НО.

Вычислим, сколько нужно взять концентрированной I кислоты. По таблице 1 л концентрированной НС1 содер­жит 451,6 г НС1. Составляем пропорцию: 1000 мл-451,6 г НС1 х » -52,35 » НС1

1000-52,35 х = 451,6 =»5 мл.

Количество воды равно 500-115 = 385 мл.

Следовательно, для приготовления 500 мл 10% рас­твора соляной кислоты нужно взять 115 мл концентри­рованного раствора НС1 и 385 мл воды.

Приблизительные растворы. При приготовлении приблизительных растворов количества веществ, которые должны быть взяты для этого, вычисляют с небольшой точностью. Атомные веса элементов для упрощения расчетов допускается брать округленными иногда до целых единиц. Так, для грубого подсчета атомный вес железа можно принять равным 56 вместо точного -55,847; для серы - 32 вместо точного 32,064 и т. д.

Вещества для приготовления приблизительных растворов взвешивают на технохимических или технических весах.

Принципиально расчеты при приготовлении растворов совершенно одинаковы для всех веществ.

Количество приготовляемого раствора выражают или в единицах массы (г, кг), или в единицах объема (мл, л), причем для каждого из этих случаев вычисление количества растворяемого вещества проводят по-разному.

Пример. Пусть требуется приготовить 1,5 кг 15%-ного раствора хлористого натрия; предварительно вычисляем требуемое количе-ство соли. Расчет проводится согласно пропорции:

т. е. если в 100 г раствора содержится 15 г соли (15%), то сколько ее потребуется для приготовления 1500 г раствора?

Расчет показывает, что нужно отвесить 225 г соли, тогда воды иужио взять 1500 - 225 = 1275 г. ¦

Если же задано получить 1,5 л того же раствора, то в этом случае по справочнику узнают его плотность, умножают последнюю на заданный объем и таким образом находят массу требуемого количества раствора. Так, плотность 15%-нoro раствора хлористого натрия при 15 0C равна 1,184 г/см3. Следовательно, 1500 мл составляет


Следовательно, количество вещества для приготовления 1,5 кг и 1,5 л раствора различно.

Расчет, приведенный выше, применим только для приготовления растворов безводных веществ. Если взята водная соль, например Na2SO4-IOH2O1 то расчет несколько видоизменяется, так как нужно принимать во внимание и кристаллизационную воду.

Пример. Пусть нужно приготовить 2 кг 10%-ного раствора Na2SO4, исходя из Na2SO4 *10H2O.

Молекулярный вес Na2SO4 равен 142,041, a Na2SO4*10H2O 322,195, или округленно 322,20.

Расчет ведут вначале па безводную соль:

Следовательно, нужно взять 200 г безводной соли. Количество десятиводной соли находят из расчета:

Воды в этом, случае нужно взять: 2000 - 453,7 =1546,3 г.

Так как раствор не всегда готовят с пересчетом на безводную соль, то на этикетке, которую обязательно следует наклеивать на сосуд с раствором, нужно указать, из какой соли приготовлен раствор, например 10%-ный раствор Na2SO4 или 25%-ный Na2SO4*10H2O.

Часто случается, что приготовленный ранее раствор нужно разбавить, т. е. уменьшить его концентрацию; растворы разбавляют или по объему, или по массе.

Пример. Нужно разбавить 20%-ный раствор сернокислого аммония так, чтобы получить 2 л 5%-иого раствора. Расчет ведем следующим путем. По справочнику узнаем, что плотность 5%-ного раствора (NH4)2SO4 равна 1,0287 г/см3. Следовательно, 2 л его должны весить 1,0287*2000 = 2057,4 г. В этом количестве должно находиться сернокислого аммония:

Учитывая, что при отмеривании могут произойти потери, нужно взять 462 мл и довести их до 2 л, т. е. добавить к ним 2000-462 = = 1538 мл воды.

Если же разбавление проводить по массе, расчет упрощается. Но вообще разбавление проводят из расчета на объем, так как жидкости, особенно в больших количествах, легче отмерить по объему, чем взвесить.

Нужно помнить, что при всякой работе как с растворением, так и с разбавлением никогда не следует выливать сразу всю воду в сосуд. Водой ополаскивают несколько раз ту посуду, в которой проводилось взвешивание или отмеривание нужного вещества, и каждый раз добавляют эту воду в сосуд для раствора.

Когда не требуется особенной точности, при разбавлении растворов или смешивании их для получения растворов другой концентрации можно пользоваться следующим простым и быстрым способом.

Возьмем разобранный уже случай разбавления 20%-ного раствора сернокислого аммония до 5%-ного. Пишем вначале так:

где 20 - концентрация взятого раствора, 0 - вода и 5"--требуемая концентрация. Теперь из 20 вычитаем 5 и полученное значение пишем в правом нижнем углу, вычитая же нуль из 5, пишем цифру в правом верхнем углу. Тогда схема примет такой вид:

Это значит, что нужно взять 5 объемов 20%-ного раствора и 15 объемов воды. Конечно, такой расчет не отличается точностью.

Если смешивать два раствора одного и того же вещества, то схема сохраняется та же, изменяются только числовые значения. Пусть смешением 35%-ного раствора и 15%-ного нужно приготовить 25%-ный раствор. Тогда схема примет такой вид:

т. е. нужно взять по 10 объемов обоих растворов. Эта схема дает приблизительные результаты и ею можно пользоваться только тогда, когда особой точности не требуется.Для всякого химика очень важно воспитать в себе привычку к точности в вычислениях, когда это необходимо, и пользоваться приближенными цифрами в тех случаях, когда это не повлияет на результаты работы.Когда нужна большая точность при разбавлении растворов, вычисление проводят по формулам.

Разберем несколько важнейших случаев.

Приготовление разбавленного раствора . Пусть с - количество раствора, m%-концентрация раствора, который нужно разбавить до концентрации п%. Получающееся при этом количество разбавленного раствора х вычисляют по формуле:

а объем воды v для разбавления раствора вычисляют по формуле:

Смешивание двух растворов одного и того же вещества различной концентрации для получения раствора заданной концентрации. Пусть смешиванием а частей m%-ного раствора с х частями п%-ного раствора нужно получить /%-ный раствор, тогда:

Точные растворы. При приготовлении точных растворов вычисление количеств нужных веществ проверят уже с достаточной степенью точности. Атомные весы элементов берут по таблице, в которой приведены их точные значения. При сложении (или вычитании) пользуются точным значением слагаемого с наименьшим числом десятичных знаков. Остальные слагаемые округляют, оставляя после запятой одним знаком больше, чем в слагаемом с наименьшим числом знаков. В результате оставляют столько цифр после запятой, сколько их имеется в слагаемом с наименьшим числом десятичных знаков; при этом производят необходимое округление. Все расчеты производят, применяя логарифмы, пятизначные или четырехзначные. Вычисленные количества вещества отвешивают только на аналитических весах.

Взвешивание проводят или на часовом стекле, или в бюксе. Отвешенное вещество высыпают в чисто вымытую мерную колбу через чистую сухую воронку небольшими порциями. Затем из промывалки несколько раз небольшими порциями воды обмывают над воронкой бнже или часовое стекло, в котором проводилось взвешивание. Воронку также несколько раз обмывают из промывалки дистиллированной водой.

Для пересыпания твердых кристаллов или порошков в мерную колбу очень удобно пользоваться воронкой, изображенной на рис. 349. Такие воронки изготовляют емкостью 3, 6, и 10 см3. Взвешивать навеску можно непосредственно в этих воронках (негигроскопические материалы), предварительно определив их массу. Навеска из воронки очень легко переводится в мерную колбу. Когда навеска пересыпается, воронку, не вынимая из горла колбы, хорошо обмывают дистиллированной водой из промывалки.

Как правило, при приготовлении точных растворов и переведении растворяемого вещества в мерную колбу растворитель (например, вода) должен занимать не более половины емкости колбы. Закрыв пробкой мерную колбу, встряхивают ее до полного растворения твердого вещества. После этого полученный раствор дополняют водой до метки и тщательно перемешивают.

Молярные растворы. Для приготовления 1 л 1 M раствора какого-либо вещества отвешивают на аналитических весах 1 моль его и растворяют, как указано выше.

Пример. Для приготовления 1 л 1 M раствора азотнокислого серебра находят в таблице или подсчитывают молекулярную массу AgNO3, она равна 169,875. Соль отвешивают и растворяют в воде.

Если нужно приготовить более разбавленный раствор (0,1 или 0,01 M), отвешивают соответственно 0,1 или 0,01 моль соли.

Если же нужно приготовить меньше 1 л раствора, то растворяют соответственно меньшее количество соли в соответствущем объеме воды.

Нормальные растворы готовят аналогично, только отвешивая не 1 моль, а 1 грамм-эквивалент твердого вещества.

Если нужно приготовить полунормальный или децинормальный раствор, берут соответственно 0,5 или 0,1 грамм-эквивалента. Когда готовят не 1 л раствора, а меньше, например 100 или 250 мл, то берут1/10 или 1/4 того количества вещества, которое требуется для приготовления I л, и растворяют в соответствующем объеме воды.

Рис 349. Воронки для пересыпания навески а колбу.

После приготовления раствора его нужно обязательно проверить титрованием соответствующим раствором другого вещества с известной нормальностью. Приготовленный раствор может не отвечать точно той нормальности, которая задана. В таких случаях иногда вводят поправку.

В производственных лабораториях иногда готовят точные растворы «по определяемому веществу». Применение таких растворов облегчает расчеты при анализах, так как достаточно умножить объем раствора, пошедший на титрование, на титр раствора, чтобы получить содержание искомого вещества (в г) во взятом для анализа количестве какого-либо раствора.

Расчет при приготовлении титрованного раствора по определяемому веществу ведут также по грамм-эквиваленту растворяемого вещества, пользуясь формулой:

Пример. Пусть нужно приготовить 3 л раствора марганцовокислого калия с титром по железу 0,0050 г/мл. Грамм-эквивалент KMnO4 равен 31,61., а грамм-эквивалент Fe 55,847.

Вычисляем по приведенной выше формуле:

Стандартные растворы. Стандартными называют растворы с разными, точно определенными концентрациями, применяемые в колориметрии, например растворы, содержащие в 1 мл 0,1, 0,01, 0,001 мг и т. д. растворенного вещества.

Кроме колориметрического анализа, такие растворы бывают нужны при определении рН, при нефелометрических определениях и пр. Иногда стандартные растворы" хранят в запаянных ампулах, однако чаще приходится готовить их непосредственно перед применением. Стандартные растворы готовят в объеме не больше 1 л, а ча ще - меньше. Только при большом расходе стандартного раствори можно готовить несколько литров его и то при условии, что стандартный раствор не будет храниться длительный срок.

Количество вещества (в г), необходимое для получения таких растворов, вычисляют по формуле:

Пример. Нужно приготовить стандартные растворы CuSO4 5H2O для колориметрического определения меди, причем в 1 мл первого раствора должно содержаться 1 мг меди, второго - 0,1 мг, третьего -0,01 мг, четвертого - 0,001 мг. Вначале готовят достаточное количество первого раствора, например 100 мл.

Чай
Для любых предложений по сайту: [email protected]