Каротиноиды содержатся в продуктах. Каротиноиды — универсальные молекулярные устройства для работы со светом
Каротиноиды — это пигменты растений, водорослей и фотосинтезирующих бактерий. Они окрашивают растения, овощи и фрукты в яркие желтые, красные и оранжевые цвета. Также они выступают в качестве антиоксиданта для людей.
Существует более 600 различных типов этого пигмента. Некоторые из них могут быть преобразованы нашим организмом в витамин А.
Наиболее распространенными каротиноидами являются:
- альфа-каротин;
- бета-каротин;
- бета-криптоксантин;
- лютеин;
- зеаксантин;
- ликопин.
Организм человека не способен самостоятельно синтезировать этот пигмент, поэтому приходится получать его вместе с пищей. К продуктам, богатым каротиноидами относятся:
- листовая капуста;
- шпинат;
- арбуз;
- мускусная дыня;
- сладкий перец;
- помидоры;
- манго;
- апельсины.
Как работают каротиноиды?
Каротиноиды являются жирорастворимыми соединениями, то есть они лучше всего поглощаются вместе с жирами. В отличие от некоторых богатых белками продуктов и овощей, приготовление или измельчение продуктов, богатых каротиноидами, увеличивают силу их питательных веществ, когда они попадают в кровоток.
Каротиноиды подразделяются на две основные группы: ксантофиллы и каротины. Оба этих типа обладают антиоксидантными свойствами. Кроме того, некоторые каротиноиды могут быть преобразованы в витамин А, являющийся важным компонентом для здоровья человека.
Каротиноиды являющиеся провитамином витамина А — альфа-каротин, бета-каротин и бета-криптоксантин.
Каротиноиды не являющиеся провитамином витамина А — лютеин, зеаксантин и ликопин.
Ксантофиллы
Ксантофиллы содержат кислород и имеют больше желтого пигмента. Они защищают нас от интенсивного воздействия солнечных лучей и больше всего связаны со здоровьем глаз. Лютеин и зеаксантин попадают под категорию ксантофилл.
Продукты, которые относятся к категории ксантофиллов:
- листовая капуста;
- шпинат;
- летний сквош;
- тыква;
- авокадо;
- ярко-жёлтые фрукты;
- кукуруза;
- яичные желтки.
Каротины
Каротины не содержат кислорода и имеют большее количество оранжевого пигмента. Каротины играют значительную роль в содействии процессу роста. Бета-каротин и ликопин попадают под эту категорию каротиноидов.
Продукты, которые относятся к категории каротинов:
- мускусная дыня;
- сладкий картофель;
- папайя;
- тыква;
- мандарины;
- помидоры;
- зимний сквош.
Польза для здоровья
Каротиноиды являются антиоксидантами, защищающими нас от болезней и улучшающими иммунную систему. Каротиноиды являющиеся провитамином витамина А могут быть преобразованы в витамин А, который необходим для роста, улучшения иммунной системы и здоровья глаз.
Здоровье глаз
Употребление в пищу богатых каротиноидами продуктов может защитить здоровые клетки глаз и предотвратить рост раковых клеток.
Одной из основных причин ухудшения зрения является дегенерация желтого пятна или дегенерация центра сетчатки. Длительное воздействие синего света может вызвать это заболевание и негативно повлиять на чувствительные участки глаза. Однако, каротиноиды лютеин и зеаксантин, обнаруженные в сетчатке, могут помочь поглотить синий свет.
Исследования показывают, что включение в рацион по меньшей мере шести миллиграммов лютеина в день может снизить риск развития дегенерации желтого пятна на 43 процента.
Сердечно-сосудистые заболевания
Каротиноиды являются антиоксидантами, снижающими воспаление в организме. Хотя это все еще находится на стадии исследования, промежуточные результаты показали, что противовоспалительные свойства каротиноидов связаны с улучшением сердечно-сосудистого здоровья. Уменьшение воспаления помогает защитить от сердечных заболеваний и предотвращает блокировку стенок артерий.
Рак
Антиоксиданты защищают клетки от свободных радикалов или веществ, которые разрушают или повреждают клеточные мембраны. Увеличение каротиноидов в нашем рационе приводит к росту количества антиоксидантов и защитных клеток в организме. Это важно при борьбе с раком и может предотвратить его развитие.
Каротиноиды связаны со снижением риска развития рака, в частности рака легких. Куря сигареты, человек глотает вредные химические вещества, которые разрушают здоровые клетки. Несмотря на смешанные результаты, одно из исследований показало небольшое снижение риска развития рака легких при включении каротиноидов в рацион.
Аналогичным образом, каротиноиды были связаны с уменьшением риска развития рака кожи. Некоторые каротиноиды могут преобразовываться в витамин А, который защищает от преждевременного старения кожи от воздействия солнца.
Итог
Добавление большего количества продуктов, богатых каротиноидами, в ваш рацион может усилить вашу иммунную систему и общее состояние здоровья.
Хотя каротиноиды доступны в биологически активных добавках витамина А, их употребление естественным образом усиливает антиоксидантные эффекты. Кроме того, добавки могут быть опасными, если они содержат высокий уровень витамина А, который может быть токсичным, в слишком больших дозах.
В любом случае, поговорите со своим врачом, прежде чем менять диету или принимать биологически активные добавки.
Каротиноиды - желтые, оранжевые или красные пигменты, синтезируемые растениями (а также бактериями и грибами), не растворимы в воде, близкие к витамину А (ретинолу) и через него - к очень важному хромофору ретиналю . Каротиноиды относятся к факторам, защищающим организм от развития опухолей.. Каротиноиды отчасти выполняют роль дополнительных фотосинтезирующих пигментов, но при этом могут осуществлять и другие функции, с фотосинтезом не связанные. К каротиноидам относятся широко распространенные каротины и ксантофиллы. По химической природе это изопреноидные углеводороды, содержащие 40 углеродных атомов ( рис. 12). Они относятся к вспомогательным фотосинтетическим пигментам , которые содержат все фотосинтезирующие организмы, относятся каротиноиды, большая группа химических соединений, представляющих собой продукт конденсации остатков изопрена ( рис. 128).
Ксантофиллы - это окисленные каротины. Особенно богаты каротинами зеленые листья некоторых растений (например, шпината), корнеплоды моркови, плоды шиповника, смородины, томата и др. У растений каротиноиды представлены главным образом физиологически наиболее активным р-каротином. Каротины наряду с ксантофиллами нередко обусловливают окраску тех или иных организмов. Например, окраска пурпурных бактерий объясняется наличием ксантофиллов типа роботина и спириллотоксина ; коричневая - бурых и диатомовых водорослей - фукоксантином .
Животные и человек не способны к синтезу каротиноидов, но, получая их с пищей, используют для синтеза витамина A. Каротиноиды, подобно хлорофиллам , очень слабо связаны с белками, они легко извлекаются из растений и используются в качестве лекарственных средств и красителей.
Большинство каротиноидов построено на основе конденсации 8 изопреноидных остатков. У некоторых каротиноидов полиизопреноидная цепь открыта и не содержит циклических группировок. Такие каротиноиды называются алифатическими. У большинства на одном или обоих концах цепи расположено по ароматическому или бета-иононовому кольцу. Каротиноиды первого типа относятся к арильным, второго - к алициклическим. Выделяют также каротиноиды, не содержащие в молекуле кислорода, и кислородсодержащие каротиноиды, общее название которых ксантофиллы .
Состав каротиноидов фотосинтезирующих эубактерий разнообразен. Наряду с пигментами, одинаковыми у разных групп, для каждой из них обнаружены определенные каротиноиды или наборы последних.
Наиболее разнообразен состав каротиноидных пигментов у пурпурных бактерий , из которых выделено свыше 50 каротиноидов. В клетках большинства пурпурных бактерий содержатся только алифатические каротиноиды, многие из которых принадлежат к группе ксантофиллов. У некоторых пурпурных серобактерий обнаружен арильный моноциклический каротиноид окенон, а у двух видов несерных пурпурных бактерий найдено небольшое количество бета-каротина, алициклического каротиноида, распространенного у цианобактерий и фотосинтезирующих эукариотных организмов.
Структурные формулы некоторых характерных для пурпурных бактерий каротиноидов представлены на рис. 70 , 2-5. Набор и количество отдельных каротиноидов определяют окраску пурпурных бактерий, густые суспензии которых имеют пурпурно-фиолетовый, красный, розовый, коричневый, желтый цвета.
Каротиноидные пигменты поглощают свет в синем и зеленом участках спектра, т.е. в области длин волн 400-550 нм. Эти пигменты, как и хлорофиллы, локализованы в мембранах и связаны с мембранными белками без участия ковалентных связей.
Функции каротиноидов фотосинтезирующих эубактерий многообразны. В качестве вспомогательных фотосинтетических пигментов каротиноиды поглощают кванты света в коротковолновой области спектра, которые затем передаются на хлорофилл . У цианобактерий энергия света, поглощенная каротиноидами, поступает в I фотосистему . Эффективность передачи энергии для разных каротиноидов колеблется от 30 до 90%.
Известно участие каротиноидов в осуществлении реакций фототаксиса , а также в защите клетки от токсических эффектов синглетного кислорода.
Действие каротиноидов не ограничивается только их участием в защите от фотодинамического эффекта . Они гасят синглетное состояние кислорода независимо от того, в каких реакциях он возникает: на свету или в темноте.
Каротиноиды (от лат. сarota – морковь) – жирорастворимые растительные пигменты желтого, оранжевого, красного цвета, предшественники витамина А.
Эти витамины (группы А) не встречаются в растительных пищевых продуктах. Они содержатся исключительно в продуктах животного происхождения и образуются в организме животного из каротинов. Каротин представляет собой не индивидуальное вещество, а смесь трех изомеров: a-каротина, b-каротина и g-каротина. b-каротин составляет 85% этой смеси.
При гидролитическом расщеплении молекулы b-каротина на две симметричные половины образуются 2 молекулы витамина А (А 1).
b-КАРОТИН
Это превращение происходит в стенках кишечника под действием фермента каротиназы.
Каротины присутствуют во многих растениях, однако в качестве каротиноидного сырья представляют интерес лишь те растения, в которых каротины накапливаются в значительных количествах. Например, морковь, тыква служат промышленным сырьем для выделения каротина в чистом виде. Другие растения, богатые каротином, являются сырьем для получения суммарных препаратов (экстрактов) или используются в форме сборов, настоев, отваров.
Витамин А имеет большое значение в организации полноценного питания и сохранения здоровья человека и животных; он способствует нормальному обмену веществ, росту и развитию организма; обеспечивает нормальную деятельность органа зрения.
Многие растения (тыква, морковь, шпинат, салат, зеленый лук, красный перец, щавель, шиповник, черника, томаты и др.) содержат каротин, являющийся провитамином А. Суточная потребность в витамине А для взрослого человека составляет 0,4-0,7 мг, для детей – 1 мг.
Род. назв. Calendula, ae, f. – уменьшит. форма от лат. Calendae . Так римляне называли первый день каждого месяца. Calendula – это как бы маленькие календы, извещающие о начале дня: у растения соцветие раскрывается днем и закрывается на ночь.
Вид. опред. officinalis, e (аптечный, лекарственный) связано с лечебными свойствами растения.
Встречается под названиями календула.
Ноготки аптечные – культивируемое однолетнее травянистое растение. Все растение железистоопушенное, листья очередные удлиненно-обратнояйцевидные, корзинки одиночные, верхушечные. Цветки золотисто-желтые или оранжевые, крупные, до 5 см в диаметре. Цветки расположены в 2-3 ряда у немахровых и в 10-15 рядов у махровых форм. Плоды семянки, развиваются из краевых язычковых цветков, срединные – бесплодные (обоеполые) и производящие только пыльцу.
Химический состав
Ноготки цветут продолжительное время (более 2 месяцев), поэтому сбор цветков проводят многократно – с начала цветения до заморозков.
При ручном сборе цветочные корзинки обрывают без цветоноса или с цветоносом длиной до 3 см через каждые 3-4 дня в первый период цветения и через 4-6 дней в последующем. За сезон проводят 15-18 сборов – 12-18 ц/га. Собранное сырье очищают от примеси листьев, кусочков стеблей, отцветших корзинок.
Механизированную уборку проводят ромашкоуборочными комбайнами.
Сушат цветки ноготков в сушилках при температуре 50-60(70)°С, реже в воздушных сушилках, разложив на ткани или бумаге слоем в одно соцветие.
Стандартизация
Качество сырья регламентировано требованиями ГФ ХI (экстрактивных веществ, извлекаемых 70% спиртом, не менее 35%).
Лекарственное сырье
Цельные или частично осыпавшиеся корзинки диаметром до 5 см с остатками цветоносов не более 3 см. Обертка серо-зеленая, одно-двухрядная; листочки ее линейные, густоопушенные. Цветоложе слегка выпуклое, голое. Краевые цветки язычковые, длиной 15-28 мм. Срединные цветки трубчатые с пятизубчатым венчиком. Цвет краевых цветков красновато-оранжевый, ярко- или бледно-желтый; срединных – оранжевый, желтовато-коричневый или желтый.
Культивируют ноготки аптечные на Украине, в Молдове, вРеспублике Беларусь.
Хранение
Хранят цветки ноготков в сухих, хорошо проветриваемых помещениях на стеллажах. Срок годности сырья 2 года.
Основное действие . Антисептическое, бактерицидное, противовоспалительное.
Применение
Цветки ноготков применяют как ранозаживляющее, противовоспалительное и бактерицидное средство. Настой применяют как желчегонное, противовоспалительное при желудочно-кишечных заболеваниях и в виде инъекций при свищах; настойку – при ангине, гингивите, для уменьшения кровоточивости десен, в стоматологии для лечения парадонтоза, в терапии – кольпитов, эрозии шейки матки, проктитов; мазь и настойку – при ушибах, порезах, инфицированных ранах, ожогах, фурункулезе. Препарат Калефлон – при язвенной болезни желудка и двенадцатиперстной кишки, при хронических гастритах. Жидкий экстракт ноготков входит в состав комплексного препарата Ротокан , обладающий противовоспалительным действием, гемостатическими свойствами, усиливающий процессы регенерации слизистых оболочек. Ротокан – комплексный препарат, в состав которого входят жидкие экстракты ромашки аптечной, тысячелистника и календулы.
Род. назв. Sorbus, i, f. как назв. растения встречается у многих римских авторов. Генетически слово связано с кельт. sor (терпкий) из-за вкуса плодов.
Вид. опред. aucuparia (aucuparius, a, um ) образовано от лат. aucupari (ловить птиц), т.к. плоды рябины применялись для ловли птиц.
Дерево высотой до 6 м, реже кустарник. Листья очередные, непарноперистые. Соцветия – густой щиток. Плоды яблокообразные, шаровидные, яркооранжевые, кислые, горьковатые, слегка вяжущие. Созревают в сентябре и обычно остаются на деревьях до глубокой осени или даже до начала зимы. Распространена почти по всей Европейской части СНГ, на Урале, Кавказе (в горах) и в Сибири. Рябина обыкновенная в Республике Беларусь встречается по всей территории, часто. Разводится как декоративное в садах и парках, вдоль шоссейных дорог.
Химический состав
Плоды рябины богаты каротиноидами, аскорбиновой кислотой (до 200мг %). Содержат витамины Р, В 2 , Е, сахара до 8%, флаво-ноиды, органические кислоты (3,9%), дубильные и горькие вещества; лактон-парасорбиновую кислоту, обладающую антибио-тическим действием, тритерпеновые соединения.
Заготовка, первичная обработка и сушка
Собирают зрелые плоды до заморозков (в августе – сентябре), срезая щитки с плодами, затем их отделяют и очищают от примеси веточек, листьев, плодоножек и поврежденных плодов.
Сушат сырье в сушилках при температуре 60-80°С, в сухую погоду можно сушить в хорошо проветриваемых помещениях, рассыпая тонким слоем на ткани или бумаге. Высушенные плоды не должны быть блеклыми или почерневшими, при сжатии образовывать комки.
Стандартизация
Качество сырья регламентировано ГФ ХI и ГОСТ 6714-74 (влажность не более 18%; золы общей не более 5%; органической примеси не более 0,5%; минеральной не более 0,2 %).
Лекарственное сырье
Согласно требованиям ГОСТа 6714-74, готовое сырье рябины состоит из плодов без плодоножек. Плоды ложные, ягодообразные («яблоко») 2-5-гнездные, округлые или овально-округлые. На верхушке плода видны остатки чашечки в виде пяти малозаметных зубчиков, смыкающихся своими верхушками в центре. В мякоти плода находятся от 2 до 7 слегка серповидноизогнутых, продолговатых, с острыми концами, гладких красновато-бурых семян. Цвет плодов красновато-оранжевый, буровато-красный или желтовато-оранжевый. Запах слабый, свойственный рябине, вкус кисловато-горький.
Хранение
На складах плоды рябины хранят в хорошо проветриваемых помещениях на стеллажах. Срок годности 2 года.
Основное действие . Поливитаминное.
Применение
Плоды рябины – поливитаминное сырье с высоким содержанием b-каротина. Свежие ягоды перерабатывают на витаминный сироп, сухие входят в состав поливитаминных сборов. Засахаренные плоды рябины и варенье из них – диетический продукт, полезный для профилактики и лечения цинги и других авитаминозов. Их можно в перспективе рассматривать как сырье для получения масляного экстракта каротиноидов рябины.
Род. назв. Hippophae, es, f. (греч. hippophaes ) как назв. растения встречается у Диоскорида, у других греч. ученых и писателей. Слово образовано от греч. hippos (лошадь) и phaоs, eos (свет, блеск). Такую этимологию объясняют тем, что в Древней Греции облепихой лечили лошадей, и их шерсть приобретала красивую, блестящую окраску.
Вид. опред. rhamnoides, is (досл. «крушиновидный») образовано от греч. rhamnos (колючий кустарник, крушина) и oides (видный) и связано с тем, что растение представляет собой колючий кустарник. Плоды у растения сидят на коротких плодоножках, как бы облепляя ветви, и отсюда русское «облепиха».
Каротиноиды - жирорастворимые пигменты желтого, оранжевого, красного цвета - присутствуют в хлоропластах всех растений. Они входят также в состав хромопластов в незеленых частях растений, например в корнеплодах моркови, от латинского наименования которой (Daucus carota L.) они и получили свое название. В зеленых листьях каротиноиды обычно незаметны из-за присутствия хлорофилла, но осенью, когда хлорофилл разрушается, именно каротиноиды придают листьям характерную желтую и оранжевую окраску. Каротиноиды синтезируются также бактериями и грибами, но не животными организмами. В настоящее время известно около 400 пигментов, относящихся к этой группе.
Структура и свойства. Элементарный состав каротиноидов установил Вильштеттер. С 1920 по 1930 г. была определена структура основных пигментов этой группы. Искусственный синтез ряда каротиноидов впервые осуществлен в 1950 г. в лаборатории П. Каррера. К каротиноидам относятся три группы соединений: 1) оранжевые или красные пигменты каротины (С 40 Н 56); 2) желтые ксантофиллы (С 4 оН 56 О 2 и С 40 H 51 O 4); 3) каротиноидные кислоты - продукты окисления каротиноидов с укороченной цепочкой и карбоксильными группами (например, C 20 H 24 O 2 - кроцетин, имеющий две карбоксильные группы).
Каротины и ксантофиллы хорошо растворимы в хлороформе, бензоле, сероуглероде, ацетоне. Каротины легко растворимы в петролейном и диэтиловом эфирах, но почти нерастворимы в метаноле и этаноле. Ксантофиллы хорошо растворимы в спиртах и значительно хуже в петролейном эфире.
Все каротиноиды - полиеновые соединения. Каротиноиды первых двух групп состоят из восьми остатков изопрена, которые образуют цепь конъюгированных двойных связей. Каротиноиды могут быть ациклическими (алифатическими), моно- и бициклическими. Циклы на концах молекул каротиноидов являются производными ионона (рис. 1).
Рис.1. Структурные формулы каротиноидов и последовательность их превращений
Примером ациклического каротиноида может служить ликопин (С 40 Н 56) - основной каротин некоторых плодов (в частности, томатов) и пурпурных бактерий.
Каротин (рис. 1) имеет два β-иононовых кольца (двойная связь между С 5 и С 6). При гидролизе β-каротина по центральной двойной связи образуются две молекулы витамина А (ретинола). α-Каротин отличается от β-каротина тем, что у него одно кольцо β-иононовое, а второе - Ј-иононовое (двойная связь между С 4 и С 5).
Ксантофилл лютеин - производное a-каротина, а зеаксантин - β-каротина. Эти ксантофиллы имеют по одной гидроксильной группе в каждом иононовом кольце. Дополнительное включение в молекулу зеаксантина двух атомов кислорода по двойным связям С 5 -С 6 (эпоксидные группы) приводит к образованию виолаксантина. Название
«виолаксантин» связано с выделением этого соединения из лепестков желтых анютиных глазок (Viola tricolor). Зеаксантин впервые получен из зерновок кукурузы (Zea mays). Лютеин (от лат. luteus - желтый) содержится, в частности, в желтке куриных яиц. К наиболее окисленным изомерам лютеина относится фукоксантин (С 40 Н 60 О 6) - главный ксантофилл бурых водорослей.
Основные каротиноиды пластид высших растений и водорослей - Β-каротин, лютеин, виолаксантин и неоксантин. Синтез каротиноидов начинается с ацетил-СоА через мевалоновую кислоту, геранилгеранилпирофосфат до ликопина, который является предшественником всех других каротиноидов. Синтез каротиноидов происходит в темноте, но резко ускоряется при действии света. Спектры поглощения каротиноидов характеризуются двумя полосами в фиолетово-синей и синей области от 400 до 500 нм (см. рис. 4.3). Количество и положение максимумов поглощения зависят от растворителя. Этот спектр поглощения определяется системой конъюгированных двойных связей. При увеличении числа таких связей максимумы поглощения смещаются в длинноволновую область спектра. Каротиноиды, как и хлорофиллы, нековалентно связаны с белками и липидами фотосинтетических мембран.
Роль каротиноидов в процессах фотосинтеза
Каротиноиды - обязательные компоненты пигментных систем всех фотосинтезирующих организмов. Они выполняют ряд функций, главные из которых: 1) участие в поглощении света в качестве дополнительных пигментов, 2) защита молекул хлорофиллов от необратимого фотоокисления. Возможно, каротиноиды принимают участие в кислородном обмене при фотосинтезе.
Важное значение каротиноидов как дополнительных пигментов, поглощающих свет в синефиолетовой и синей частях спектра, становится очевидным при рассмотрении распределения энергии в спектре суммарной солнечной радиации на поверхности Земли. Как следует из рисунка 2, максимум этой радиации приходится на сине-голубую и зеленую части спектра (480 - 530 нм). В естественных условиях доходящая до поверхности Земли суммарная радиация слагается из потока прямой солнечной радиации на горизонтальную поверхность и рассеянной радиации неба.
Рис.2.Распределение энергии в спектре суммарной и рассеянной радиации при безоблачном небе
Рассеивание света в атмосфере происходит благодаря аэрозольным частицам (капли воды, пылинки и т. д.) и флуктуациям плотности воздуха (молекулярное рассеяние). Спектральный состав суммарной радиации в области 350 - 800 нм при безоблачном небе в течение дня почти не меняется. Объясняется это тем, что увеличение доли красных лучей в прямой солнечной радиации при низком стоянии Солнца сопровождается увеличением доли рассеянного света, в котором много сине-фиолетовых лучей. Атмосфера Земли в значительно большей степени рассеивает лучи коротковолновой части спектра (интенсивность рассеяния обратно пропорциональна длине волны в четвертой степени), поэтому небо выглядит голубым. При отсутствии прямого солнечного света (пасмурная погода) увеличивается доля сине-фиолетовых лучей. Эти данные указывают на важность коротковолновой части спектра при использовании наземными растениями рассеянного света и возможность участия каротиноидов в фотосинтезе в качестве дополнительных пигментов. В модельных опытах показана высокая эффективность переноса энергии света от каротиноидов к хлорофиллу а, причем этой способностью обладают молекулы каротинов, но не ксантофиллов.
Вторая функция каротиноидов - защитная. Впервые данные о том, что каротиноиды могут защищать молекулы хлорофилла от разрушения, были получены Д. И. Ивановским. В его опытах пробирки, содержащие одинаковый объем раствора хлорофилла и разные концентрации каротиноидов, выставлялись на 3 ч на прямой солнечный свет. Оказалось, что чем больше каротиноидов было в пробирке, тем в меньшей степени разрушался хлорофилл. В дальнейшем эти данные получили многочисленные подтверждения. Так, бескаротиноидные мутанты хламидомонады на свету в атмосфере кислорода погибают, а в темноте при гетеротрофном способе питания нормально развиваются и размножаются. У мутанта кукурузы, у которого отсутствовал синтез каротиноидов, образующийся хлорофилл в аэробных условиях при сильном освещении быстро разрушался. В отсутствие кислорода хлорофилл не разрушался.
Каким же образом каротиноиды препятствуют разрушению хлорофилла? В настоящее время показано, что каротиноиды способны реагировать с хлорофиллом, находящимся в триплетном состоянии, предотвращая его необратимое окисление. При этом энергия триплетного возбужденного состояния хлорофилла превращается в теплоту.
Рис.3. Реакция каротиноидов с хлорофиллом
Кроме этого каротиноиды, взаимодействуя с возбужденным (синглетным) кислородом, который неспецифически окисляет многие органические вещества, могут переводить его в основное состояние.
Рис.4. Реакция каротиноидов с возбужденным кислородом
Менее ясна роль каротиноидов в кислородном обмене при фотосинтезе. У высших растений, мхов, зеленых и бурых водорослей осуществляется светозависимое обратимое дезэпоксидирование ксантофиллов. Примером такого превращения может служить виолаксантиновый цикл.
Рис.5. Виолаксантиновый цикл
Значение виолаксантинового цикла остается невыясненным. Возможно, он служит для устранения излишков кислорода. Каротиноиды у растений выполняют и другие функции, не связанные с фотосинтезом. В светочувствительных «глазках» одноклеточных жгутиковых и в верхушках побегов высших растений каротиноиды, контрастируя свет, способствуют определению его направления. Это необходимо для фототаксисов у жгутиковых и фототропизмов у высших растений.
Каротиноиды обусловливают цвет лепестков и плодов у некоторых растений Производные каротиноидов - витамин А, ксантоксин, действующий подобно АБК, и другие биологически активные соединения. Хромопротеин родопсин, обнаруженный у некоторых галофильных бактерий, поглощая свет, функционирует в качестве Н + -помпы. Хромофорной группой бактериородопсина является ретиналь - альдегидная форма витамина А. Бактериородопсин аналогичен родопсину зрительных анализаторов животных.
Характеризуются способностью накапливать большие количества каротиноидов. Каротиноиды представляют собой соединения терпеноидной природы и большинство из них принадлежат к тетратспенам, содержащим 40 углеводных атомов в молекуле (С 40 -соединения). Они состоят из восьми изопреновых единиц и образованы связыванием «хвост к хвосту» двух фрагментов, каждый из которых состоит из четырех изопреновых остатков, соединенных «голова к голове». Таким образом, две центральные метильные группы находятся в 1,6-положении относительно друг друга, в то время как остальные нетерминальные метильные группы находятся в 1,5-положении (рис. 1).
Рисунок 1 — Схема соединения изопреновых остатков в центральной части молекул каротиноидов.
Каротиноиды.Общая характеристика
Все каротиноиды формально могут быть получены из ациклического соединения ликопина (рис. 2) посредством реакций, включающих гидрогенирование, дегидрогенирование, циклизацию, вставку кислорода в различные положения, миграцию двойных связей, миграцию метальных групп, удлинение цепи, укорочение цепи.
Рисунок 2 — Структура ликопина
Состоящие исключительно из атомов углерода и водорода, называются каротинами. К ним относятся ликопин, фитоин, фитофлуин, ‘alpha;, ‘beta;, ‘gamma;, ‘delta;, ‘zeta;, ‘epsilon;-каротины, нейроспорин, ‘alpha;- и ‘beta;-зеакаротины (рис. 4). Каротиноиды, содержащие кислород, называются ксантофиллами . Подавляющее большинство известных в настоящее время каротиноидов - ксантофиллы (рис. 4), Каротиноиды, у которых одинарные и двойные связи смещены на одну позицию, называют ретрокаротиноидами . К ретрокаротиноидам, например, относится пигмент ксантофильной группы эшшольцксантин.
Рисунок 3 — Структурные формулы каротинов хромопластов.
Кроме С 40 -каротиноидов в растениях распространены их производные, которые содержат меньше 40 атомов углерода (апокаротиноиды), примером которых могут служить 3-цитраурин и кроцетин. У грибов и бактерий встречаются также С 45 — и С 50 -каротиноиды, не обнаруженные у высших растений.
Наличие сопряженных двойных связей в структуре каротиноидов может обусловливать цис-транс-томерно . Большинство природно встречающихся каротиноидов находятся в транс-форме. Однако у живых организмов, в том числе и у растений, обнаружены также цис-изомеры некоторых каротиноидов, например цис-фитоин, цис-фитофлуин, проликопин (цис-изомер ликопина). Циклические структуры во многих каротиноидах содержат асимметрические атомы углерода, что также обусловливает существование множества стереоизомеров. В частности, хризантемаксантин и флавоксантин имеют одинаковую структурную формулу, но различаются между собой пространственной ориентацией боковых группировок.
Рисунок 4 — Структурные формулы ксантофиллов хромопластов.
Каротиноиды встречаются в свободном состоянии или могут быть этерифицированы жирными кислотами, ацетатом и углеводами. Сложные эфиры ксантофиллов с пальмитиновой, стеариновой, миристановой, лауриновой кислотами и ацетатом обнаружены в лепестках цветков подсолнечника однолетнего, а основное количество кроцетина, наиболее обильно представленного пигмента лепестков сафрона, этерифицирова но гентиобиозой и глюкозой в различных сочетаниях.
Распространение и локализация каротиноидов
Каротиноиды фотосинтезирующих тканей локализованы в основном в гранах хлоропластов, вероятно, в форме хромопротеидов . В частности, были обнаружены комплексы белков с виолаксантином и ‘beta;-каротином. Когда хлоропластные белки солюбилизируются детергентом, они могут быть разделены с помощью центрифугирования на две основные фракции — легкую и тяжелую, которые соответствуют фотосистемам I и II. Каротиноиды неравномерно распределены между этими двумя фракциями. Фотосистема I обогащена ‘beta;-каротином, в фотосистеме II преобладают ксантофиллы.
Пигменты этиолированных проростков локализованы в этиопластах. При этом следует отметить, что преобладающие пигменты в этиопластах этиолированных проростков и хлоропластов зрелых листьев отличны между собой. Так, основными ксантофиллами этиопластов фасоли обыкновенной являются флавоксантин и хризантемаксантин, которые отсутствуют в зеленых листьях. В то же время в них не обнаруживается неоксантин, который является наиболее обильным пигментом в листьях взрослых растении.
Каротиноиды в лепестках цветков локализованы в хромопластах.
В хромопластах желтого нарцисса каротиноиды накапливаются в основном в многочисленных концентрических мембранах. ‘beta;-Каротин в пластидах венца нарцисса снежно-белого находится в кристаллах, расположенных во внутритилакоидном пространстве. В хромопластах цветков хризантемы посевной и испанского дрока обыкновенного, тюльпана, саротамнуса метлистого и многих других растений каротиноиды локализованы в осмиофильных пластоглобулах. В лепестках калюжницы болотной каротиноиды, помимо хромопластов, обнаруживаются также в хлоропластах, а в цветках некоторых растений каротиноиды отсутствуют.
В хромопластах цветков тюльпана каротиноиды локализованы в осмиофильных пластоглобулах
Ксантофиллы в хромопластах цветков, в отличие от пигментов фото-синтезирующих тканей, этерифицированы пальмитиновой, стеариновой, миристиновой либо лауриновой кислотами. Обнаружены также каротиноиды, этерифицированные ацетатом и углеводами.
Зрелые плоды многих растений окрашены благодаря наличию в них тех или иных каротиноидов. Как и в цветках, каротиноиды плодов локализованы в хромопластах, которые развиваются из хлоропластов в процессе созревания. В некоторых случаях, как например в плодах ландыша майского, хромопласты образуются из пропластид.
Каротиноиды в хромопластах красных плодов перца однолетнего, тыквы обыкновенной, розы морщинистой и плодах некоторых других растений локализованы в осмиофильных пластоглобулах и трубчатых образованиях. В плодах желтых, оранжевых и белых разновидностей перца однолетнего каротиноиды накапливаются в форме кристаллических образований. Ксантофиллы в плодах, как и в цветках, в значительной степени этерифицированы.
Распространены каротиноиды в подземных органах моркови и батата, хотя следует отметить, что цвет некоторых азиатских разновидностей моркови обусловлен наличием антоцианов. 90-95 % каротиноидов оранжевых сортов моркови представлены каротинами . Среди них наиболее обильно представлены ‘alpha; ‘beta;, v-каротины и ликопин , в то время как ‘gamma;-каротин, ‘zeta;-каротин, нейроспорин, фитоин и фитофлуин обнаружены в следовых количествах. Ксантофиллы в оранжевой моркови составляют только 5-10 % общего количества каротиноидов, однако их количество возрастает до 75-93 % в разновидностях желтой моркови и не менее 95 % в белой моркови.
Основным пигментом батата (Ipomea batatas edulis ) является ‘beta;-каротин . В моркови пигменты локализованы в хромопластах кристаллического типа, структура которых была детально изучена. Каротиноиды также обнаружены в семенах, пыльниках, тычинках, пыльце различных растений. Показано, что в придатках початков тифониума расщепленного и арума они локализованы в хромопластах.
Каротиноидный состав хромопластов весьма своеобразен и существен но отличается от состава пигментов в хлоропластах. Несмотря на то, что основные каротиноиды большинства хромопластов обнаружены также и в хлоропластах фотосинтезирующих тканей, их количественное соотношение в этих органеллах различное. В то же время в хромопластах некоторых растений находятся специфические каротиноиды, которых нет в хлоропластах. Так, например, капсантин - один из преобладающих пигментов зрелых томатов - содержится только в хромопластах. Более того, это видоспецифический пигмент, поскольку его до настоящего времени не удалось обнаружить у других растений.
Как отмечалось ранее, основная масса каротиноидов растений локализована в пластидах. Однако каротиноиды были идентифицированы и в непластидных структурных компонентах растительных клеток. В частности, многие зеленые водоросли при неблагоприятных условиях развития, обычно при азотном голодании, накапливают большие количества каротиноидов во внутриклеточных отложениях без ограничивающих мембран и в липидных вакуолях. S.Brow n и J.Prebble , применяя специальные предосторожности с целью ингибирования липаз и полифенолокскдаз, обнаружили, что распределение каротина во фракциях при дифференциальном центри-фугировании в градиенте плотности сахарозы гомогената цветной капусты совпадало с распределением сукцинатдегидрогеназы - фермента, являющегося маркером для митохондрий.
На основании этих экспериментов авторы заключили, что митохондрии содержат каротиноиды. Аналогичные выводы сделаны в опытах с клубнями картофеля, где каротиноиды обнаружены также в других фракциях, в частности во фракции «легких» мембран и в микросомах. Однако количество пигментов в непластидных фракциях было незначительным, что несколько затрудняет интерпретацию полученных результатов.